Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1scvarpwval | Structured version Visualization version GIF version |
Description: Value of a univariate polynomial evaluation mapping a multiple of an exponentiation of a variable to the multiple of the exponentiation of the evaluated variable. (Contributed by AV, 18-Sep-2019.) |
Ref | Expression |
---|---|
evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
evl1scvarpw.t1 | ⊢ × = ( ·𝑠 ‘𝑊) |
evl1scvarpw.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
evl1scvarpwval.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
evl1scvarpwval.h | ⊢ 𝐻 = (mulGrp‘𝑅) |
evl1scvarpwval.e | ⊢ 𝐸 = (.g‘𝐻) |
evl1scvarpwval.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
evl1scvarpwval | ⊢ (𝜑 → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1varpw.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1varpw.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑅) | |
3 | evl1varpw.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | eqid 2737 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
5 | evl1varpw.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
6 | evl1scvarpwval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
7 | crngring 19890 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
8 | 5, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | 2 | ply1ring 21525 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑊 ∈ Ring) |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ Ring) |
11 | evl1varpw.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑊) | |
12 | 11 | ringmgp 19884 | . . . . . 6 ⊢ (𝑊 ∈ Ring → 𝐺 ∈ Mnd) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
14 | evl1varpw.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
15 | evl1varpw.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
16 | 15, 2, 4 | vr1cl 21494 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑊)) |
17 | 8, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
18 | 11, 4 | mgpbas 19821 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝐺) |
19 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
20 | 18, 19 | mulgnn0cl 18817 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
21 | 13, 14, 17, 20 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (Base‘𝑊)) |
22 | evl1scvarpwval.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑅) | |
23 | evl1scvarpwval.e | . . . . 5 ⊢ 𝐸 = (.g‘𝐻) | |
24 | 1, 2, 11, 15, 3, 19, 5, 14, 6, 22, 23 | evl1varpwval 21634 | . . . 4 ⊢ (𝜑 → ((𝑄‘(𝑁 ↑ 𝑋))‘𝐶) = (𝑁𝐸𝐶)) |
25 | 21, 24 | jca 513 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝑋) ∈ (Base‘𝑊) ∧ ((𝑄‘(𝑁 ↑ 𝑋))‘𝐶) = (𝑁𝐸𝐶))) |
26 | evl1scvarpw.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
27 | evl1scvarpw.t1 | . . 3 ⊢ × = ( ·𝑠 ‘𝑊) | |
28 | evl1scvarpwval.t | . . 3 ⊢ · = (.r‘𝑅) | |
29 | 1, 2, 3, 4, 5, 6, 25, 26, 27, 28 | evl1vsd 21616 | . 2 ⊢ (𝜑 → ((𝐴 × (𝑁 ↑ 𝑋)) ∈ (Base‘𝑊) ∧ ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶)))) |
30 | 29 | simprd 497 | 1 ⊢ (𝜑 → ((𝑄‘(𝐴 × (𝑁 ↑ 𝑋)))‘𝐶) = (𝐴 · (𝑁𝐸𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6484 (class class class)co 7342 ℕ0cn0 12339 Basecbs 17010 .rcmulr 17061 ·𝑠 cvsca 17064 Mndcmnd 18483 .gcmg 18797 mulGrpcmgp 19815 Ringcrg 19878 CRingccrg 19879 var1cv1 21453 Poly1cpl1 21454 eval1ce1 21586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-ofr 7601 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-pm 8694 df-ixp 8762 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-sup 9304 df-oi 9372 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-fz 13346 df-fzo 13489 df-seq 13828 df-hash 14151 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-hom 17084 df-cco 17085 df-0g 17250 df-gsum 17251 df-prds 17256 df-pws 17258 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-srg 19837 df-ring 19880 df-cring 19881 df-rnghom 20054 df-subrg 20127 df-lmod 20231 df-lss 20300 df-lsp 20340 df-assa 21166 df-asp 21167 df-ascl 21168 df-psr 21218 df-mvr 21219 df-mpl 21220 df-opsr 21222 df-evls 21388 df-evl 21389 df-psr1 21457 df-vr1 21458 df-ply1 21459 df-evl1 21588 |
This theorem is referenced by: evl1gsummon 21637 |
Copyright terms: Public domain | W3C validator |