| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evlsca | Structured version Visualization version GIF version | ||
| Description: Simple polynomial evaluation maps scalars to constant functions. (Contributed by AV, 12-Sep-2019.) |
| Ref | Expression |
|---|---|
| evlsca.q | ⊢ 𝑄 = (𝐼 eval 𝑆) |
| evlsca.w | ⊢ 𝑊 = (𝐼 mPoly 𝑆) |
| evlsca.b | ⊢ 𝐵 = (Base‘𝑆) |
| evlsca.a | ⊢ 𝐴 = (algSc‘𝑊) |
| evlsca.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlsca.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsca.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evlsca | ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ ((𝐼 evalSub 𝑆)‘𝐵) = ((𝐼 evalSub 𝑆)‘𝐵) | |
| 2 | evlsca.q | . . 3 ⊢ 𝑄 = (𝐼 eval 𝑆) | |
| 3 | eqid 2734 | . . 3 ⊢ (𝐼 mPoly (𝑆 ↾s 𝐵)) = (𝐼 mPoly (𝑆 ↾s 𝐵)) | |
| 4 | eqid 2734 | . . 3 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
| 5 | evlsca.w | . . 3 ⊢ 𝑊 = (𝐼 mPoly 𝑆) | |
| 6 | evlsca.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 7 | eqid 2734 | . . 3 ⊢ (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵))) = (algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵))) | |
| 8 | evlsca.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
| 9 | evlsca.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 10 | evlsca.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 11 | crngring 20190 | . . . 4 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 12 | 6 | subrgid 20518 | . . . 4 ⊢ (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆)) |
| 13 | 10, 11, 12 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑆)) |
| 14 | evlsca.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14 | evlsscasrng 22040 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋)) = (𝑄‘(𝐴‘𝑋))) |
| 16 | 1, 3, 4, 6, 7, 9, 10, 13, 14 | evlssca 22032 | . 2 ⊢ (𝜑 → (((𝐼 evalSub 𝑆)‘𝐵)‘((algSc‘(𝐼 mPoly (𝑆 ↾s 𝐵)))‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| 17 | 15, 16 | eqtr3d 2771 | 1 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4599 × cxp 5649 ‘cfv 6527 (class class class)co 7399 ↑m cmap 8834 Basecbs 17213 ↾s cress 17236 Ringcrg 20178 CRingccrg 20179 SubRingcsubrg 20514 algSccascl 21797 mPoly cmpl 21851 evalSub ces 22015 eval cevl 22016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-ofr 7666 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-sup 9448 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-fzo 13661 df-seq 14009 df-hash 14337 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-hom 17280 df-cco 17281 df-0g 17440 df-gsum 17441 df-prds 17446 df-pws 17448 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-mulg 19036 df-subg 19091 df-ghm 19181 df-cntz 19285 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-srg 20132 df-ring 20180 df-cring 20181 df-rhm 20417 df-subrng 20491 df-subrg 20515 df-lmod 20804 df-lss 20874 df-lsp 20914 df-assa 21798 df-asp 21799 df-ascl 21800 df-psr 21854 df-mvr 21855 df-mpl 21856 df-evls 22017 df-evl 22018 |
| This theorem is referenced by: evl0 42505 |
| Copyright terms: Public domain | W3C validator |