![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihordlem6 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma N of [Crawley] p. 122 line 35. (Contributed by NM, 3-Mar-2014.) |
Ref | Expression |
---|---|
dihordlem8.b | ⊢ 𝐵 = (Base‘𝐾) |
dihordlem8.l | ⊢ ≤ = (le‘𝐾) |
dihordlem8.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihordlem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihordlem8.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dihordlem8.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dihordlem8.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihordlem8.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihordlem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihordlem8.s | ⊢ + = (+g‘𝑈) |
dihordlem8.g | ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) |
Ref | Expression |
---|---|
dihordlem6 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | simp2r 1200 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | |
3 | simp2l 1199 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
4 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) | |
5 | dihordlem8.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
6 | dihordlem8.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | dihordlem8.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | dihordlem8.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | dihordlem8.p | . . 3 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
10 | dihordlem8.o | . . 3 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
11 | dihordlem8.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | dihordlem8.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
13 | dihordlem8.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
14 | dihordlem8.s | . . 3 ⊢ + = (+g‘𝑈) | |
15 | dihordlem8.g | . . 3 ⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑅) | |
16 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | cdlemn6 41161 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
17 | 1, 2, 3, 4, 16 | syl121anc 1375 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇)) → (〈(𝑠‘𝐺), 𝑠〉 + 〈𝑔, 𝑂〉) = 〈((𝑠‘𝐺) ∘ 𝑔), 𝑠〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6575 ℩crio 7405 (class class class)co 7450 Basecbs 17260 +gcplusg 17313 lecple 17320 occoc 17321 Atomscatm 39221 HLchlt 39308 LHypclh 39943 LTrncltrn 40060 TEndoctendo 40711 DVecHcdvh 41037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-riotaBAD 38911 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-undef 8316 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-struct 17196 df-slot 17231 df-ndx 17243 df-base 17261 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-proset 18367 df-poset 18385 df-plt 18402 df-lub 18418 df-glb 18419 df-join 18420 df-meet 18421 df-p0 18497 df-p1 18498 df-lat 18504 df-clat 18571 df-oposet 39134 df-ol 39136 df-oml 39137 df-covers 39224 df-ats 39225 df-atl 39256 df-cvlat 39280 df-hlat 39309 df-llines 39457 df-lplanes 39458 df-lvols 39459 df-lines 39460 df-psubsp 39462 df-pmap 39463 df-padd 39755 df-lhyp 39947 df-laut 39948 df-ldil 40063 df-ltrn 40064 df-trl 40118 df-tendo 40714 df-edring 40716 df-dvech 41038 |
This theorem is referenced by: dihordlem7 41173 |
Copyright terms: Public domain | W3C validator |