Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvscavalb Structured version   Visualization version   GIF version

Theorem frlmvscavalb 20540
 Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmplusgvalb.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmplusgvalb.b 𝐵 = (Base‘𝐹)
frlmplusgvalb.i (𝜑𝐼𝑊)
frlmplusgvalb.x (𝜑𝑋𝐵)
frlmplusgvalb.z (𝜑𝑍𝐵)
frlmplusgvalb.r (𝜑𝑅 ∈ Ring)
frlmvscavalb.k 𝐾 = (Base‘𝑅)
frlmvscavalb.a (𝜑𝐴𝐾)
frlmvscavalb.v = ( ·𝑠𝐹)
frlmvscavalb.t · = (.r𝑅)
Assertion
Ref Expression
frlmvscavalb (𝜑 → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑋   𝑖,𝑍   𝜑,𝑖   𝐴,𝑖   ,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝑅(𝑖)   · (𝑖)   𝐹(𝑖)   𝐾(𝑖)   𝑊(𝑖)

Proof of Theorem frlmvscavalb
StepHypRef Expression
1 frlmplusgvalb.i . . . . . 6 (𝜑𝐼𝑊)
2 frlmplusgvalb.z . . . . . 6 (𝜑𝑍𝐵)
3 frlmplusgvalb.f . . . . . . 7 𝐹 = (𝑅 freeLMod 𝐼)
4 frlmvscavalb.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 frlmplusgvalb.b . . . . . . 7 𝐵 = (Base‘𝐹)
63, 4, 5frlmbasmap 20529 . . . . . 6 ((𝐼𝑊𝑍𝐵) → 𝑍 ∈ (𝐾m 𝐼))
71, 2, 6syl2anc 587 . . . . 5 (𝜑𝑍 ∈ (𝐾m 𝐼))
84fvexi 6676 . . . . . . 7 𝐾 ∈ V
98a1i 11 . . . . . 6 (𝜑𝐾 ∈ V)
109, 1elmapd 8435 . . . . 5 (𝜑 → (𝑍 ∈ (𝐾m 𝐼) ↔ 𝑍:𝐼𝐾))
117, 10mpbid 235 . . . 4 (𝜑𝑍:𝐼𝐾)
1211ffnd 6503 . . 3 (𝜑𝑍 Fn 𝐼)
13 frlmplusgvalb.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
143frlmlmod 20519 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ LMod)
1513, 1, 14syl2anc 587 . . . . . . 7 (𝜑𝐹 ∈ LMod)
16 frlmvscavalb.a . . . . . . . . 9 (𝜑𝐴𝐾)
1716, 4eleqtrdi 2862 . . . . . . . 8 (𝜑𝐴 ∈ (Base‘𝑅))
183frlmsca 20523 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝐹))
1913, 1, 18syl2anc 587 . . . . . . . . 9 (𝜑𝑅 = (Scalar‘𝐹))
2019fveq2d 6666 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
2117, 20eleqtrd 2854 . . . . . . 7 (𝜑𝐴 ∈ (Base‘(Scalar‘𝐹)))
22 frlmplusgvalb.x . . . . . . 7 (𝜑𝑋𝐵)
23 eqid 2758 . . . . . . . 8 (Scalar‘𝐹) = (Scalar‘𝐹)
24 frlmvscavalb.v . . . . . . . 8 = ( ·𝑠𝐹)
25 eqid 2758 . . . . . . . 8 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
265, 23, 24, 25lmodvscl 19724 . . . . . . 7 ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋𝐵) → (𝐴 𝑋) ∈ 𝐵)
2715, 21, 22, 26syl3anc 1368 . . . . . 6 (𝜑 → (𝐴 𝑋) ∈ 𝐵)
283, 4, 5frlmbasmap 20529 . . . . . 6 ((𝐼𝑊 ∧ (𝐴 𝑋) ∈ 𝐵) → (𝐴 𝑋) ∈ (𝐾m 𝐼))
291, 27, 28syl2anc 587 . . . . 5 (𝜑 → (𝐴 𝑋) ∈ (𝐾m 𝐼))
309, 1elmapd 8435 . . . . 5 (𝜑 → ((𝐴 𝑋) ∈ (𝐾m 𝐼) ↔ (𝐴 𝑋):𝐼𝐾))
3129, 30mpbid 235 . . . 4 (𝜑 → (𝐴 𝑋):𝐼𝐾)
3231ffnd 6503 . . 3 (𝜑 → (𝐴 𝑋) Fn 𝐼)
33 eqfnfv 6797 . . 3 ((𝑍 Fn 𝐼 ∧ (𝐴 𝑋) Fn 𝐼) → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 𝑋)‘𝑖)))
3412, 32, 33syl2anc 587 . 2 (𝜑 → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 𝑋)‘𝑖)))
351adantr 484 . . . . 5 ((𝜑𝑖𝐼) → 𝐼𝑊)
3616adantr 484 . . . . 5 ((𝜑𝑖𝐼) → 𝐴𝐾)
3722adantr 484 . . . . 5 ((𝜑𝑖𝐼) → 𝑋𝐵)
38 simpr 488 . . . . 5 ((𝜑𝑖𝐼) → 𝑖𝐼)
39 frlmvscavalb.t . . . . 5 · = (.r𝑅)
403, 5, 4, 35, 36, 37, 38, 24, 39frlmvscaval 20538 . . . 4 ((𝜑𝑖𝐼) → ((𝐴 𝑋)‘𝑖) = (𝐴 · (𝑋𝑖)))
4140eqeq2d 2769 . . 3 ((𝜑𝑖𝐼) → ((𝑍𝑖) = ((𝐴 𝑋)‘𝑖) ↔ (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
4241ralbidva 3125 . 2 (𝜑 → (∀𝑖𝐼 (𝑍𝑖) = ((𝐴 𝑋)‘𝑖) ↔ ∀𝑖𝐼 (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
4334, 42bitrd 282 1 (𝜑 → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409   Fn wfn 6334  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155   ↑m cmap 8421  Basecbs 16546  .rcmulr 16629  Scalarcsca 16631   ·𝑠 cvsca 16632  Ringcrg 19370  LModclmod 19707   freeLMod cfrlm 20516 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-sup 8944  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-hom 16652  df-cco 16653  df-0g 16778  df-prds 16784  df-pws 16786  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-grp 18177  df-minusg 18178  df-sbg 18179  df-subg 18348  df-mgp 19313  df-ur 19325  df-ring 19372  df-subrg 19606  df-lmod 19709  df-lss 19777  df-sra 20017  df-rgmod 20018  df-dsmm 20502  df-frlm 20517 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator