MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvscavalb Structured version   Visualization version   GIF version

Theorem frlmvscavalb 21808
Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmplusgvalb.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmplusgvalb.b 𝐵 = (Base‘𝐹)
frlmplusgvalb.i (𝜑𝐼𝑊)
frlmplusgvalb.x (𝜑𝑋𝐵)
frlmplusgvalb.z (𝜑𝑍𝐵)
frlmplusgvalb.r (𝜑𝑅 ∈ Ring)
frlmvscavalb.k 𝐾 = (Base‘𝑅)
frlmvscavalb.a (𝜑𝐴𝐾)
frlmvscavalb.v = ( ·𝑠𝐹)
frlmvscavalb.t · = (.r𝑅)
Assertion
Ref Expression
frlmvscavalb (𝜑 → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑋   𝑖,𝑍   𝜑,𝑖   𝐴,𝑖   ,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝑅(𝑖)   · (𝑖)   𝐹(𝑖)   𝐾(𝑖)   𝑊(𝑖)

Proof of Theorem frlmvscavalb
StepHypRef Expression
1 frlmplusgvalb.i . . . . . 6 (𝜑𝐼𝑊)
2 frlmplusgvalb.z . . . . . 6 (𝜑𝑍𝐵)
3 frlmplusgvalb.f . . . . . . 7 𝐹 = (𝑅 freeLMod 𝐼)
4 frlmvscavalb.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 frlmplusgvalb.b . . . . . . 7 𝐵 = (Base‘𝐹)
63, 4, 5frlmbasmap 21797 . . . . . 6 ((𝐼𝑊𝑍𝐵) → 𝑍 ∈ (𝐾m 𝐼))
71, 2, 6syl2anc 584 . . . . 5 (𝜑𝑍 ∈ (𝐾m 𝐼))
84fvexi 6921 . . . . . . 7 𝐾 ∈ V
98a1i 11 . . . . . 6 (𝜑𝐾 ∈ V)
109, 1elmapd 8879 . . . . 5 (𝜑 → (𝑍 ∈ (𝐾m 𝐼) ↔ 𝑍:𝐼𝐾))
117, 10mpbid 232 . . . 4 (𝜑𝑍:𝐼𝐾)
1211ffnd 6738 . . 3 (𝜑𝑍 Fn 𝐼)
13 frlmplusgvalb.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
143frlmlmod 21787 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ LMod)
1513, 1, 14syl2anc 584 . . . . . . 7 (𝜑𝐹 ∈ LMod)
16 frlmvscavalb.a . . . . . . . . 9 (𝜑𝐴𝐾)
1716, 4eleqtrdi 2849 . . . . . . . 8 (𝜑𝐴 ∈ (Base‘𝑅))
183frlmsca 21791 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝐹))
1913, 1, 18syl2anc 584 . . . . . . . . 9 (𝜑𝑅 = (Scalar‘𝐹))
2019fveq2d 6911 . . . . . . . 8 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
2117, 20eleqtrd 2841 . . . . . . 7 (𝜑𝐴 ∈ (Base‘(Scalar‘𝐹)))
22 frlmplusgvalb.x . . . . . . 7 (𝜑𝑋𝐵)
23 eqid 2735 . . . . . . . 8 (Scalar‘𝐹) = (Scalar‘𝐹)
24 frlmvscavalb.v . . . . . . . 8 = ( ·𝑠𝐹)
25 eqid 2735 . . . . . . . 8 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
265, 23, 24, 25lmodvscl 20893 . . . . . . 7 ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋𝐵) → (𝐴 𝑋) ∈ 𝐵)
2715, 21, 22, 26syl3anc 1370 . . . . . 6 (𝜑 → (𝐴 𝑋) ∈ 𝐵)
283, 4, 5frlmbasmap 21797 . . . . . 6 ((𝐼𝑊 ∧ (𝐴 𝑋) ∈ 𝐵) → (𝐴 𝑋) ∈ (𝐾m 𝐼))
291, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝐴 𝑋) ∈ (𝐾m 𝐼))
309, 1elmapd 8879 . . . . 5 (𝜑 → ((𝐴 𝑋) ∈ (𝐾m 𝐼) ↔ (𝐴 𝑋):𝐼𝐾))
3129, 30mpbid 232 . . . 4 (𝜑 → (𝐴 𝑋):𝐼𝐾)
3231ffnd 6738 . . 3 (𝜑 → (𝐴 𝑋) Fn 𝐼)
33 eqfnfv 7051 . . 3 ((𝑍 Fn 𝐼 ∧ (𝐴 𝑋) Fn 𝐼) → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 𝑋)‘𝑖)))
3412, 32, 33syl2anc 584 . 2 (𝜑 → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 𝑋)‘𝑖)))
351adantr 480 . . . . 5 ((𝜑𝑖𝐼) → 𝐼𝑊)
3616adantr 480 . . . . 5 ((𝜑𝑖𝐼) → 𝐴𝐾)
3722adantr 480 . . . . 5 ((𝜑𝑖𝐼) → 𝑋𝐵)
38 simpr 484 . . . . 5 ((𝜑𝑖𝐼) → 𝑖𝐼)
39 frlmvscavalb.t . . . . 5 · = (.r𝑅)
403, 5, 4, 35, 36, 37, 38, 24, 39frlmvscaval 21806 . . . 4 ((𝜑𝑖𝐼) → ((𝐴 𝑋)‘𝑖) = (𝐴 · (𝑋𝑖)))
4140eqeq2d 2746 . . 3 ((𝜑𝑖𝐼) → ((𝑍𝑖) = ((𝐴 𝑋)‘𝑖) ↔ (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
4241ralbidva 3174 . 2 (𝜑 → (∀𝑖𝐼 (𝑍𝑖) = ((𝐴 𝑋)‘𝑖) ↔ ∀𝑖𝐼 (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
4334, 42bitrd 279 1 (𝜑 → (𝑍 = (𝐴 𝑋) ↔ ∀𝑖𝐼 (𝑍𝑖) = (𝐴 · (𝑋𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  Ringcrg 20251  LModclmod 20875   freeLMod cfrlm 21784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator