Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmvscavalb | Structured version Visualization version GIF version |
Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmplusgvalb.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmplusgvalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgvalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmplusgvalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
frlmplusgvalb.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmvscavalb.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscavalb.v | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
frlmvscavalb.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
frlmvscavalb | ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | frlmplusgvalb.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
3 | frlmplusgvalb.f | . . . . . . 7 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
4 | frlmvscavalb.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
5 | frlmplusgvalb.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐹) | |
6 | 3, 4, 5 | frlmbasmap 21011 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ (𝐾 ↑m 𝐼)) |
7 | 1, 2, 6 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝐾 ↑m 𝐼)) |
8 | 4 | fvexi 6818 | . . . . . . 7 ⊢ 𝐾 ∈ V |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ V) |
10 | 9, 1 | elmapd 8660 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝐾 ↑m 𝐼) ↔ 𝑍:𝐼⟶𝐾)) |
11 | 7, 10 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑍:𝐼⟶𝐾) |
12 | 11 | ffnd 6631 | . . 3 ⊢ (𝜑 → 𝑍 Fn 𝐼) |
13 | frlmplusgvalb.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
14 | 3 | frlmlmod 21001 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
15 | 13, 1, 14 | syl2anc 585 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ LMod) |
16 | frlmvscavalb.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
17 | 16, 4 | eleqtrdi 2847 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
18 | 3 | frlmsca 21005 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) |
19 | 13, 1, 18 | syl2anc 585 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
20 | 19 | fveq2d 6808 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
21 | 17, 20 | eleqtrd 2839 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝐹))) |
22 | frlmplusgvalb.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
23 | eqid 2736 | . . . . . . . 8 ⊢ (Scalar‘𝐹) = (Scalar‘𝐹) | |
24 | frlmvscavalb.v | . . . . . . . 8 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
25 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) | |
26 | 5, 23, 24, 25 | lmodvscl 20185 | . . . . . . 7 ⊢ ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋 ∈ 𝐵) → (𝐴 ∙ 𝑋) ∈ 𝐵) |
27 | 15, 21, 22, 26 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∙ 𝑋) ∈ 𝐵) |
28 | 3, 4, 5 | frlmbasmap 21011 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝐴 ∙ 𝑋) ∈ 𝐵) → (𝐴 ∙ 𝑋) ∈ (𝐾 ↑m 𝐼)) |
29 | 1, 27, 28 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → (𝐴 ∙ 𝑋) ∈ (𝐾 ↑m 𝐼)) |
30 | 9, 1 | elmapd 8660 | . . . . 5 ⊢ (𝜑 → ((𝐴 ∙ 𝑋) ∈ (𝐾 ↑m 𝐼) ↔ (𝐴 ∙ 𝑋):𝐼⟶𝐾)) |
31 | 29, 30 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ∙ 𝑋):𝐼⟶𝐾) |
32 | 31 | ffnd 6631 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) Fn 𝐼) |
33 | eqfnfv 6941 | . . 3 ⊢ ((𝑍 Fn 𝐼 ∧ (𝐴 ∙ 𝑋) Fn 𝐼) → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖))) | |
34 | 12, 32, 33 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖))) |
35 | 1 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
36 | 16 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
37 | 22 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
38 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | |
39 | frlmvscavalb.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
40 | 3, 5, 4, 35, 36, 37, 38, 24, 39 | frlmvscaval 21020 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐴 ∙ 𝑋)‘𝑖) = (𝐴 · (𝑋‘𝑖))) |
41 | 40 | eqeq2d 2747 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖) ↔ (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
42 | 41 | ralbidva 3169 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
43 | 34, 42 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 Basecbs 16957 .rcmulr 17008 Scalarcsca 17010 ·𝑠 cvsca 17011 Ringcrg 19828 LModclmod 20168 freeLMod cfrlm 20998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-hom 17031 df-cco 17032 df-0g 17197 df-prds 17203 df-pws 17205 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-minusg 18626 df-sbg 18627 df-subg 18797 df-mgp 19766 df-ur 19783 df-ring 19830 df-subrg 20067 df-lmod 20170 df-lss 20239 df-sra 20479 df-rgmod 20480 df-dsmm 20984 df-frlm 20999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |