![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvscavalb | Structured version Visualization version GIF version |
Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | β’ πΉ = (π freeLMod πΌ) |
frlmplusgvalb.b | β’ π΅ = (BaseβπΉ) |
frlmplusgvalb.i | β’ (π β πΌ β π) |
frlmplusgvalb.x | β’ (π β π β π΅) |
frlmplusgvalb.z | β’ (π β π β π΅) |
frlmplusgvalb.r | β’ (π β π β Ring) |
frlmvscavalb.k | β’ πΎ = (Baseβπ ) |
frlmvscavalb.a | β’ (π β π΄ β πΎ) |
frlmvscavalb.v | β’ β = ( Β·π βπΉ) |
frlmvscavalb.t | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
frlmvscavalb | β’ (π β (π = (π΄ β π) β βπ β πΌ (πβπ) = (π΄ Β· (πβπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.i | . . . . . 6 β’ (π β πΌ β π) | |
2 | frlmplusgvalb.z | . . . . . 6 β’ (π β π β π΅) | |
3 | frlmplusgvalb.f | . . . . . . 7 β’ πΉ = (π freeLMod πΌ) | |
4 | frlmvscavalb.k | . . . . . . 7 β’ πΎ = (Baseβπ ) | |
5 | frlmplusgvalb.b | . . . . . . 7 β’ π΅ = (BaseβπΉ) | |
6 | 3, 4, 5 | frlmbasmap 21692 | . . . . . 6 β’ ((πΌ β π β§ π β π΅) β π β (πΎ βm πΌ)) |
7 | 1, 2, 6 | syl2anc 582 | . . . . 5 β’ (π β π β (πΎ βm πΌ)) |
8 | 4 | fvexi 6904 | . . . . . . 7 β’ πΎ β V |
9 | 8 | a1i 11 | . . . . . 6 β’ (π β πΎ β V) |
10 | 9, 1 | elmapd 8852 | . . . . 5 β’ (π β (π β (πΎ βm πΌ) β π:πΌβΆπΎ)) |
11 | 7, 10 | mpbid 231 | . . . 4 β’ (π β π:πΌβΆπΎ) |
12 | 11 | ffnd 6718 | . . 3 β’ (π β π Fn πΌ) |
13 | frlmplusgvalb.r | . . . . . . . 8 β’ (π β π β Ring) | |
14 | 3 | frlmlmod 21682 | . . . . . . . 8 β’ ((π β Ring β§ πΌ β π) β πΉ β LMod) |
15 | 13, 1, 14 | syl2anc 582 | . . . . . . 7 β’ (π β πΉ β LMod) |
16 | frlmvscavalb.a | . . . . . . . . 9 β’ (π β π΄ β πΎ) | |
17 | 16, 4 | eleqtrdi 2835 | . . . . . . . 8 β’ (π β π΄ β (Baseβπ )) |
18 | 3 | frlmsca 21686 | . . . . . . . . . 10 β’ ((π β Ring β§ πΌ β π) β π = (ScalarβπΉ)) |
19 | 13, 1, 18 | syl2anc 582 | . . . . . . . . 9 β’ (π β π = (ScalarβπΉ)) |
20 | 19 | fveq2d 6894 | . . . . . . . 8 β’ (π β (Baseβπ ) = (Baseβ(ScalarβπΉ))) |
21 | 17, 20 | eleqtrd 2827 | . . . . . . 7 β’ (π β π΄ β (Baseβ(ScalarβπΉ))) |
22 | frlmplusgvalb.x | . . . . . . 7 β’ (π β π β π΅) | |
23 | eqid 2725 | . . . . . . . 8 β’ (ScalarβπΉ) = (ScalarβπΉ) | |
24 | frlmvscavalb.v | . . . . . . . 8 β’ β = ( Β·π βπΉ) | |
25 | eqid 2725 | . . . . . . . 8 β’ (Baseβ(ScalarβπΉ)) = (Baseβ(ScalarβπΉ)) | |
26 | 5, 23, 24, 25 | lmodvscl 20760 | . . . . . . 7 β’ ((πΉ β LMod β§ π΄ β (Baseβ(ScalarβπΉ)) β§ π β π΅) β (π΄ β π) β π΅) |
27 | 15, 21, 22, 26 | syl3anc 1368 | . . . . . 6 β’ (π β (π΄ β π) β π΅) |
28 | 3, 4, 5 | frlmbasmap 21692 | . . . . . 6 β’ ((πΌ β π β§ (π΄ β π) β π΅) β (π΄ β π) β (πΎ βm πΌ)) |
29 | 1, 27, 28 | syl2anc 582 | . . . . 5 β’ (π β (π΄ β π) β (πΎ βm πΌ)) |
30 | 9, 1 | elmapd 8852 | . . . . 5 β’ (π β ((π΄ β π) β (πΎ βm πΌ) β (π΄ β π):πΌβΆπΎ)) |
31 | 29, 30 | mpbid 231 | . . . 4 β’ (π β (π΄ β π):πΌβΆπΎ) |
32 | 31 | ffnd 6718 | . . 3 β’ (π β (π΄ β π) Fn πΌ) |
33 | eqfnfv 7033 | . . 3 β’ ((π Fn πΌ β§ (π΄ β π) Fn πΌ) β (π = (π΄ β π) β βπ β πΌ (πβπ) = ((π΄ β π)βπ))) | |
34 | 12, 32, 33 | syl2anc 582 | . 2 β’ (π β (π = (π΄ β π) β βπ β πΌ (πβπ) = ((π΄ β π)βπ))) |
35 | 1 | adantr 479 | . . . . 5 β’ ((π β§ π β πΌ) β πΌ β π) |
36 | 16 | adantr 479 | . . . . 5 β’ ((π β§ π β πΌ) β π΄ β πΎ) |
37 | 22 | adantr 479 | . . . . 5 β’ ((π β§ π β πΌ) β π β π΅) |
38 | simpr 483 | . . . . 5 β’ ((π β§ π β πΌ) β π β πΌ) | |
39 | frlmvscavalb.t | . . . . 5 β’ Β· = (.rβπ ) | |
40 | 3, 5, 4, 35, 36, 37, 38, 24, 39 | frlmvscaval 21701 | . . . 4 β’ ((π β§ π β πΌ) β ((π΄ β π)βπ) = (π΄ Β· (πβπ))) |
41 | 40 | eqeq2d 2736 | . . 3 β’ ((π β§ π β πΌ) β ((πβπ) = ((π΄ β π)βπ) β (πβπ) = (π΄ Β· (πβπ)))) |
42 | 41 | ralbidva 3166 | . 2 β’ (π β (βπ β πΌ (πβπ) = ((π΄ β π)βπ) β βπ β πΌ (πβπ) = (π΄ Β· (πβπ)))) |
43 | 34, 42 | bitrd 278 | 1 β’ (π β (π = (π΄ β π) β βπ β πΌ (πβπ) = (π΄ Β· (πβπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 Vcvv 3463 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7413 βm cmap 8838 Basecbs 17174 .rcmulr 17228 Scalarcsca 17230 Β·π cvsca 17231 Ringcrg 20172 LModclmod 20742 freeLMod cfrlm 21679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-prds 17423 df-pws 17425 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18892 df-minusg 18893 df-sbg 18894 df-subg 19077 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-ring 20174 df-subrg 20507 df-lmod 20744 df-lss 20815 df-sra 21057 df-rgmod 21058 df-dsmm 21665 df-frlm 21680 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |