Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmvscavalb | Structured version Visualization version GIF version |
Description: Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmplusgvalb.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmplusgvalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgvalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmplusgvalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
frlmplusgvalb.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmvscavalb.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscavalb.v | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
frlmvscavalb.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
frlmvscavalb | ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | frlmplusgvalb.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
3 | frlmplusgvalb.f | . . . . . . 7 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
4 | frlmvscavalb.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
5 | frlmplusgvalb.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐹) | |
6 | 3, 4, 5 | frlmbasmap 20947 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ (𝐾 ↑m 𝐼)) |
7 | 1, 2, 6 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝐾 ↑m 𝐼)) |
8 | 4 | fvexi 6782 | . . . . . . 7 ⊢ 𝐾 ∈ V |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ V) |
10 | 9, 1 | elmapd 8603 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝐾 ↑m 𝐼) ↔ 𝑍:𝐼⟶𝐾)) |
11 | 7, 10 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝑍:𝐼⟶𝐾) |
12 | 11 | ffnd 6597 | . . 3 ⊢ (𝜑 → 𝑍 Fn 𝐼) |
13 | frlmplusgvalb.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
14 | 3 | frlmlmod 20937 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
15 | 13, 1, 14 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ LMod) |
16 | frlmvscavalb.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
17 | 16, 4 | eleqtrdi 2850 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
18 | 3 | frlmsca 20941 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) |
19 | 13, 1, 18 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
20 | 19 | fveq2d 6772 | . . . . . . . 8 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
21 | 17, 20 | eleqtrd 2842 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝐹))) |
22 | frlmplusgvalb.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
23 | eqid 2739 | . . . . . . . 8 ⊢ (Scalar‘𝐹) = (Scalar‘𝐹) | |
24 | frlmvscavalb.v | . . . . . . . 8 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
25 | eqid 2739 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) | |
26 | 5, 23, 24, 25 | lmodvscl 20121 | . . . . . . 7 ⊢ ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋 ∈ 𝐵) → (𝐴 ∙ 𝑋) ∈ 𝐵) |
27 | 15, 21, 22, 26 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∙ 𝑋) ∈ 𝐵) |
28 | 3, 4, 5 | frlmbasmap 20947 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝐴 ∙ 𝑋) ∈ 𝐵) → (𝐴 ∙ 𝑋) ∈ (𝐾 ↑m 𝐼)) |
29 | 1, 27, 28 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝐴 ∙ 𝑋) ∈ (𝐾 ↑m 𝐼)) |
30 | 9, 1 | elmapd 8603 | . . . . 5 ⊢ (𝜑 → ((𝐴 ∙ 𝑋) ∈ (𝐾 ↑m 𝐼) ↔ (𝐴 ∙ 𝑋):𝐼⟶𝐾)) |
31 | 29, 30 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ∙ 𝑋):𝐼⟶𝐾) |
32 | 31 | ffnd 6597 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) Fn 𝐼) |
33 | eqfnfv 6903 | . . 3 ⊢ ((𝑍 Fn 𝐼 ∧ (𝐴 ∙ 𝑋) Fn 𝐼) → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖))) | |
34 | 12, 32, 33 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖))) |
35 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
36 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
37 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
38 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | |
39 | frlmvscavalb.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
40 | 3, 5, 4, 35, 36, 37, 38, 24, 39 | frlmvscaval 20956 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐴 ∙ 𝑋)‘𝑖) = (𝐴 · (𝑋‘𝑖))) |
41 | 40 | eqeq2d 2750 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖) ↔ (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
42 | 41 | ralbidva 3121 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 ∙ 𝑋)‘𝑖) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
43 | 34, 42 | bitrd 278 | 1 ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 Basecbs 16893 .rcmulr 16944 Scalarcsca 16946 ·𝑠 cvsca 16947 Ringcrg 19764 LModclmod 20104 freeLMod cfrlm 20934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-hom 16967 df-cco 16968 df-0g 17133 df-prds 17139 df-pws 17141 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-mgp 19702 df-ur 19719 df-ring 19766 df-subrg 20003 df-lmod 20106 df-lss 20175 df-sra 20415 df-rgmod 20416 df-dsmm 20920 df-frlm 20935 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |