MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvplusgscavalb Structured version   Visualization version   GIF version

Theorem frlmvplusgscavalb 20843
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmplusgvalb.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmplusgvalb.b 𝐵 = (Base‘𝐹)
frlmplusgvalb.i (𝜑𝐼𝑊)
frlmplusgvalb.x (𝜑𝑋𝐵)
frlmplusgvalb.z (𝜑𝑍𝐵)
frlmplusgvalb.r (𝜑𝑅 ∈ Ring)
frlmvscavalb.k 𝐾 = (Base‘𝑅)
frlmvscavalb.a (𝜑𝐴𝐾)
frlmvscavalb.v = ( ·𝑠𝐹)
frlmvscavalb.t · = (.r𝑅)
frlmvplusgscavalb.y (𝜑𝑌𝐵)
frlmvplusgscavalb.a + = (+g𝑅)
frlmvplusgscavalb.p = (+g𝐹)
frlmvplusgscavalb.c (𝜑𝐶𝐾)
Assertion
Ref Expression
frlmvplusgscavalb (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑋   𝑖,𝑍   𝜑,𝑖   𝐴,𝑖   ,𝑖   𝐶,𝑖   𝑖,𝑌   ,𝑖
Allowed substitution hints:   𝐵(𝑖)   + (𝑖)   𝑅(𝑖)   · (𝑖)   𝐹(𝑖)   𝐾(𝑖)   𝑊(𝑖)

Proof of Theorem frlmvplusgscavalb
StepHypRef Expression
1 frlmplusgvalb.f . . 3 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmplusgvalb.b . . 3 𝐵 = (Base‘𝐹)
3 frlmplusgvalb.i . . 3 (𝜑𝐼𝑊)
4 frlmplusgvalb.r . . . . 5 (𝜑𝑅 ∈ Ring)
51frlmlmod 20821 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ LMod)
64, 3, 5syl2anc 584 . . . 4 (𝜑𝐹 ∈ LMod)
7 frlmvscavalb.a . . . . . 6 (𝜑𝐴𝐾)
8 frlmvscavalb.k . . . . . 6 𝐾 = (Base‘𝑅)
97, 8eleqtrdi 2920 . . . . 5 (𝜑𝐴 ∈ (Base‘𝑅))
101frlmsca 20825 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝐹))
114, 3, 10syl2anc 584 . . . . . 6 (𝜑𝑅 = (Scalar‘𝐹))
1211fveq2d 6667 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
139, 12eleqtrd 2912 . . . 4 (𝜑𝐴 ∈ (Base‘(Scalar‘𝐹)))
14 frlmplusgvalb.x . . . 4 (𝜑𝑋𝐵)
15 eqid 2818 . . . . 5 (Scalar‘𝐹) = (Scalar‘𝐹)
16 frlmvscavalb.v . . . . 5 = ( ·𝑠𝐹)
17 eqid 2818 . . . . 5 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
182, 15, 16, 17lmodvscl 19580 . . . 4 ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋𝐵) → (𝐴 𝑋) ∈ 𝐵)
196, 13, 14, 18syl3anc 1363 . . 3 (𝜑 → (𝐴 𝑋) ∈ 𝐵)
20 frlmplusgvalb.z . . 3 (𝜑𝑍𝐵)
21 frlmvplusgscavalb.c . . . . . 6 (𝜑𝐶𝐾)
2221, 8eleqtrdi 2920 . . . . 5 (𝜑𝐶 ∈ (Base‘𝑅))
2322, 12eleqtrd 2912 . . . 4 (𝜑𝐶 ∈ (Base‘(Scalar‘𝐹)))
24 frlmvplusgscavalb.y . . . 4 (𝜑𝑌𝐵)
252, 15, 16, 17lmodvscl 19580 . . . 4 ((𝐹 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑌𝐵) → (𝐶 𝑌) ∈ 𝐵)
266, 23, 24, 25syl3anc 1363 . . 3 (𝜑 → (𝐶 𝑌) ∈ 𝐵)
27 frlmvplusgscavalb.a . . 3 + = (+g𝑅)
28 frlmvplusgscavalb.p . . 3 = (+g𝐹)
291, 2, 3, 19, 20, 4, 26, 27, 28frlmplusgvalb 20841 . 2 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖))))
303adantr 481 . . . . . 6 ((𝜑𝑖𝐼) → 𝐼𝑊)
317adantr 481 . . . . . 6 ((𝜑𝑖𝐼) → 𝐴𝐾)
3214adantr 481 . . . . . 6 ((𝜑𝑖𝐼) → 𝑋𝐵)
33 simpr 485 . . . . . 6 ((𝜑𝑖𝐼) → 𝑖𝐼)
34 frlmvscavalb.t . . . . . 6 · = (.r𝑅)
351, 2, 8, 30, 31, 32, 33, 16, 34frlmvscaval 20840 . . . . 5 ((𝜑𝑖𝐼) → ((𝐴 𝑋)‘𝑖) = (𝐴 · (𝑋𝑖)))
3621adantr 481 . . . . . 6 ((𝜑𝑖𝐼) → 𝐶𝐾)
3724adantr 481 . . . . . 6 ((𝜑𝑖𝐼) → 𝑌𝐵)
381, 2, 8, 30, 36, 37, 33, 16, 34frlmvscaval 20840 . . . . 5 ((𝜑𝑖𝐼) → ((𝐶 𝑌)‘𝑖) = (𝐶 · (𝑌𝑖)))
3935, 38oveq12d 7163 . . . 4 ((𝜑𝑖𝐼) → (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖))))
4039eqeq2d 2829 . . 3 ((𝜑𝑖𝐼) → ((𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) ↔ (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4140ralbidva 3193 . 2 (𝜑 → (∀𝑖𝐼 (𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4229, 41bitrd 280 1 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  .rcmulr 16554  Scalarcsca 16556   ·𝑠 cvsca 16557  Ringcrg 19226  LModclmod 19563   freeLMod cfrlm 20818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-0g 16703  df-prds 16709  df-pws 16711  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-mgp 19169  df-ur 19181  df-ring 19228  df-subrg 19462  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-dsmm 20804  df-frlm 20819
This theorem is referenced by:  rrxplusgvscavalb  23925
  Copyright terms: Public domain W3C validator