MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvplusgscavalb Structured version   Visualization version   GIF version

Theorem frlmvplusgscavalb 21791
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmplusgvalb.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmplusgvalb.b 𝐵 = (Base‘𝐹)
frlmplusgvalb.i (𝜑𝐼𝑊)
frlmplusgvalb.x (𝜑𝑋𝐵)
frlmplusgvalb.z (𝜑𝑍𝐵)
frlmplusgvalb.r (𝜑𝑅 ∈ Ring)
frlmvscavalb.k 𝐾 = (Base‘𝑅)
frlmvscavalb.a (𝜑𝐴𝐾)
frlmvscavalb.v = ( ·𝑠𝐹)
frlmvscavalb.t · = (.r𝑅)
frlmvplusgscavalb.y (𝜑𝑌𝐵)
frlmvplusgscavalb.a + = (+g𝑅)
frlmvplusgscavalb.p = (+g𝐹)
frlmvplusgscavalb.c (𝜑𝐶𝐾)
Assertion
Ref Expression
frlmvplusgscavalb (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑋   𝑖,𝑍   𝜑,𝑖   𝐴,𝑖   ,𝑖   𝐶,𝑖   𝑖,𝑌   ,𝑖
Allowed substitution hints:   𝐵(𝑖)   + (𝑖)   𝑅(𝑖)   · (𝑖)   𝐹(𝑖)   𝐾(𝑖)   𝑊(𝑖)

Proof of Theorem frlmvplusgscavalb
StepHypRef Expression
1 frlmplusgvalb.f . . 3 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmplusgvalb.b . . 3 𝐵 = (Base‘𝐹)
3 frlmplusgvalb.i . . 3 (𝜑𝐼𝑊)
4 frlmplusgvalb.r . . . . 5 (𝜑𝑅 ∈ Ring)
51frlmlmod 21769 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ LMod)
64, 3, 5syl2anc 584 . . . 4 (𝜑𝐹 ∈ LMod)
7 frlmvscavalb.a . . . . . 6 (𝜑𝐴𝐾)
8 frlmvscavalb.k . . . . . 6 𝐾 = (Base‘𝑅)
97, 8eleqtrdi 2851 . . . . 5 (𝜑𝐴 ∈ (Base‘𝑅))
101frlmsca 21773 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝐹))
114, 3, 10syl2anc 584 . . . . . 6 (𝜑𝑅 = (Scalar‘𝐹))
1211fveq2d 6910 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
139, 12eleqtrd 2843 . . . 4 (𝜑𝐴 ∈ (Base‘(Scalar‘𝐹)))
14 frlmplusgvalb.x . . . 4 (𝜑𝑋𝐵)
15 eqid 2737 . . . . 5 (Scalar‘𝐹) = (Scalar‘𝐹)
16 frlmvscavalb.v . . . . 5 = ( ·𝑠𝐹)
17 eqid 2737 . . . . 5 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
182, 15, 16, 17lmodvscl 20876 . . . 4 ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋𝐵) → (𝐴 𝑋) ∈ 𝐵)
196, 13, 14, 18syl3anc 1373 . . 3 (𝜑 → (𝐴 𝑋) ∈ 𝐵)
20 frlmplusgvalb.z . . 3 (𝜑𝑍𝐵)
21 frlmvplusgscavalb.c . . . . . 6 (𝜑𝐶𝐾)
2221, 8eleqtrdi 2851 . . . . 5 (𝜑𝐶 ∈ (Base‘𝑅))
2322, 12eleqtrd 2843 . . . 4 (𝜑𝐶 ∈ (Base‘(Scalar‘𝐹)))
24 frlmvplusgscavalb.y . . . 4 (𝜑𝑌𝐵)
252, 15, 16, 17lmodvscl 20876 . . . 4 ((𝐹 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑌𝐵) → (𝐶 𝑌) ∈ 𝐵)
266, 23, 24, 25syl3anc 1373 . . 3 (𝜑 → (𝐶 𝑌) ∈ 𝐵)
27 frlmvplusgscavalb.a . . 3 + = (+g𝑅)
28 frlmvplusgscavalb.p . . 3 = (+g𝐹)
291, 2, 3, 19, 20, 4, 26, 27, 28frlmplusgvalb 21789 . 2 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖))))
303adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝐼𝑊)
317adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝐴𝐾)
3214adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝑋𝐵)
33 simpr 484 . . . . . 6 ((𝜑𝑖𝐼) → 𝑖𝐼)
34 frlmvscavalb.t . . . . . 6 · = (.r𝑅)
351, 2, 8, 30, 31, 32, 33, 16, 34frlmvscaval 21788 . . . . 5 ((𝜑𝑖𝐼) → ((𝐴 𝑋)‘𝑖) = (𝐴 · (𝑋𝑖)))
3621adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝐶𝐾)
3724adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝑌𝐵)
381, 2, 8, 30, 36, 37, 33, 16, 34frlmvscaval 21788 . . . . 5 ((𝜑𝑖𝐼) → ((𝐶 𝑌)‘𝑖) = (𝐶 · (𝑌𝑖)))
3935, 38oveq12d 7449 . . . 4 ((𝜑𝑖𝐼) → (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖))))
4039eqeq2d 2748 . . 3 ((𝜑𝑖𝐼) → ((𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) ↔ (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4140ralbidva 3176 . 2 (𝜑 → (∀𝑖𝐼 (𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4229, 41bitrd 279 1 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  Ringcrg 20230  LModclmod 20858   freeLMod cfrlm 21766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767
This theorem is referenced by:  rrxplusgvscavalb  25429
  Copyright terms: Public domain W3C validator