Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmvplusgscavalb | Structured version Visualization version GIF version |
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmplusgvalb.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmplusgvalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgvalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmplusgvalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
frlmplusgvalb.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmvscavalb.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscavalb.v | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
frlmvscavalb.t | ⊢ · = (.r‘𝑅) |
frlmvplusgscavalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
frlmvplusgscavalb.a | ⊢ + = (+g‘𝑅) |
frlmvplusgscavalb.p | ⊢ ✚ = (+g‘𝐹) |
frlmvplusgscavalb.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
frlmvplusgscavalb | ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmplusgvalb.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmplusgvalb.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | frlmplusgvalb.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | 1 | frlmlmod 20866 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
6 | 4, 3, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ LMod) |
7 | frlmvscavalb.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
8 | frlmvscavalb.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
9 | 7, 8 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
10 | 1 | frlmsca 20870 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) |
11 | 4, 3, 10 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
12 | 11 | fveq2d 6760 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
13 | 9, 12 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝐹))) |
14 | frlmplusgvalb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝐹) = (Scalar‘𝐹) | |
16 | frlmvscavalb.v | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
17 | eqid 2738 | . . . . 5 ⊢ (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) | |
18 | 2, 15, 16, 17 | lmodvscl 20055 | . . . 4 ⊢ ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋 ∈ 𝐵) → (𝐴 ∙ 𝑋) ∈ 𝐵) |
19 | 6, 13, 14, 18 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) ∈ 𝐵) |
20 | frlmplusgvalb.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
21 | frlmvplusgscavalb.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
22 | 21, 8 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝑅)) |
23 | 22, 12 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (Base‘(Scalar‘𝐹))) |
24 | frlmvplusgscavalb.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
25 | 2, 15, 16, 17 | lmodvscl 20055 | . . . 4 ⊢ ((𝐹 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑌 ∈ 𝐵) → (𝐶 ∙ 𝑌) ∈ 𝐵) |
26 | 6, 23, 24, 25 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐶 ∙ 𝑌) ∈ 𝐵) |
27 | frlmvplusgscavalb.a | . . 3 ⊢ + = (+g‘𝑅) | |
28 | frlmvplusgscavalb.p | . . 3 ⊢ ✚ = (+g‘𝐹) | |
29 | 1, 2, 3, 19, 20, 4, 26, 27, 28 | frlmplusgvalb 20886 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)))) |
30 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
31 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
32 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
33 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | |
34 | frlmvscavalb.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
35 | 1, 2, 8, 30, 31, 32, 33, 16, 34 | frlmvscaval 20885 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐴 ∙ 𝑋)‘𝑖) = (𝐴 · (𝑋‘𝑖))) |
36 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐶 ∈ 𝐾) |
37 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑌 ∈ 𝐵) |
38 | 1, 2, 8, 30, 36, 37, 33, 16, 34 | frlmvscaval 20885 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐶 ∙ 𝑌)‘𝑖) = (𝐶 · (𝑌‘𝑖))) |
39 | 35, 38 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖)))) |
40 | 39 | eqeq2d 2749 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) ↔ (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
41 | 40 | ralbidva 3119 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
42 | 29, 41 | bitrd 278 | 1 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 Ringcrg 19698 LModclmod 20038 freeLMod cfrlm 20863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 |
This theorem is referenced by: rrxplusgvscavalb 24464 |
Copyright terms: Public domain | W3C validator |