MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvplusgscavalb Structured version   Visualization version   GIF version

Theorem frlmvplusgscavalb 21697
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
frlmplusgvalb.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmplusgvalb.b 𝐵 = (Base‘𝐹)
frlmplusgvalb.i (𝜑𝐼𝑊)
frlmplusgvalb.x (𝜑𝑋𝐵)
frlmplusgvalb.z (𝜑𝑍𝐵)
frlmplusgvalb.r (𝜑𝑅 ∈ Ring)
frlmvscavalb.k 𝐾 = (Base‘𝑅)
frlmvscavalb.a (𝜑𝐴𝐾)
frlmvscavalb.v = ( ·𝑠𝐹)
frlmvscavalb.t · = (.r𝑅)
frlmvplusgscavalb.y (𝜑𝑌𝐵)
frlmvplusgscavalb.a + = (+g𝑅)
frlmvplusgscavalb.p = (+g𝐹)
frlmvplusgscavalb.c (𝜑𝐶𝐾)
Assertion
Ref Expression
frlmvplusgscavalb (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Distinct variable groups:   𝑖,𝐼   𝑖,𝑋   𝑖,𝑍   𝜑,𝑖   𝐴,𝑖   ,𝑖   𝐶,𝑖   𝑖,𝑌   ,𝑖
Allowed substitution hints:   𝐵(𝑖)   + (𝑖)   𝑅(𝑖)   · (𝑖)   𝐹(𝑖)   𝐾(𝑖)   𝑊(𝑖)

Proof of Theorem frlmvplusgscavalb
StepHypRef Expression
1 frlmplusgvalb.f . . 3 𝐹 = (𝑅 freeLMod 𝐼)
2 frlmplusgvalb.b . . 3 𝐵 = (Base‘𝐹)
3 frlmplusgvalb.i . . 3 (𝜑𝐼𝑊)
4 frlmplusgvalb.r . . . . 5 (𝜑𝑅 ∈ Ring)
51frlmlmod 21675 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ LMod)
64, 3, 5syl2anc 584 . . . 4 (𝜑𝐹 ∈ LMod)
7 frlmvscavalb.a . . . . . 6 (𝜑𝐴𝐾)
8 frlmvscavalb.k . . . . . 6 𝐾 = (Base‘𝑅)
97, 8eleqtrdi 2838 . . . . 5 (𝜑𝐴 ∈ (Base‘𝑅))
101frlmsca 21679 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 = (Scalar‘𝐹))
114, 3, 10syl2anc 584 . . . . . 6 (𝜑𝑅 = (Scalar‘𝐹))
1211fveq2d 6830 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
139, 12eleqtrd 2830 . . . 4 (𝜑𝐴 ∈ (Base‘(Scalar‘𝐹)))
14 frlmplusgvalb.x . . . 4 (𝜑𝑋𝐵)
15 eqid 2729 . . . . 5 (Scalar‘𝐹) = (Scalar‘𝐹)
16 frlmvscavalb.v . . . . 5 = ( ·𝑠𝐹)
17 eqid 2729 . . . . 5 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
182, 15, 16, 17lmodvscl 20800 . . . 4 ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋𝐵) → (𝐴 𝑋) ∈ 𝐵)
196, 13, 14, 18syl3anc 1373 . . 3 (𝜑 → (𝐴 𝑋) ∈ 𝐵)
20 frlmplusgvalb.z . . 3 (𝜑𝑍𝐵)
21 frlmvplusgscavalb.c . . . . . 6 (𝜑𝐶𝐾)
2221, 8eleqtrdi 2838 . . . . 5 (𝜑𝐶 ∈ (Base‘𝑅))
2322, 12eleqtrd 2830 . . . 4 (𝜑𝐶 ∈ (Base‘(Scalar‘𝐹)))
24 frlmvplusgscavalb.y . . . 4 (𝜑𝑌𝐵)
252, 15, 16, 17lmodvscl 20800 . . . 4 ((𝐹 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑌𝐵) → (𝐶 𝑌) ∈ 𝐵)
266, 23, 24, 25syl3anc 1373 . . 3 (𝜑 → (𝐶 𝑌) ∈ 𝐵)
27 frlmvplusgscavalb.a . . 3 + = (+g𝑅)
28 frlmvplusgscavalb.p . . 3 = (+g𝐹)
291, 2, 3, 19, 20, 4, 26, 27, 28frlmplusgvalb 21695 . 2 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖))))
303adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝐼𝑊)
317adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝐴𝐾)
3214adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝑋𝐵)
33 simpr 484 . . . . . 6 ((𝜑𝑖𝐼) → 𝑖𝐼)
34 frlmvscavalb.t . . . . . 6 · = (.r𝑅)
351, 2, 8, 30, 31, 32, 33, 16, 34frlmvscaval 21694 . . . . 5 ((𝜑𝑖𝐼) → ((𝐴 𝑋)‘𝑖) = (𝐴 · (𝑋𝑖)))
3621adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝐶𝐾)
3724adantr 480 . . . . . 6 ((𝜑𝑖𝐼) → 𝑌𝐵)
381, 2, 8, 30, 36, 37, 33, 16, 34frlmvscaval 21694 . . . . 5 ((𝜑𝑖𝐼) → ((𝐶 𝑌)‘𝑖) = (𝐶 · (𝑌𝑖)))
3935, 38oveq12d 7371 . . . 4 ((𝜑𝑖𝐼) → (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖))))
4039eqeq2d 2740 . . 3 ((𝜑𝑖𝐼) → ((𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) ↔ (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4140ralbidva 3150 . 2 (𝜑 → (∀𝑖𝐼 (𝑍𝑖) = (((𝐴 𝑋)‘𝑖) + ((𝐶 𝑌)‘𝑖)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
4229, 41bitrd 279 1 (𝜑 → (𝑍 = ((𝐴 𝑋) (𝐶 𝑌)) ↔ ∀𝑖𝐼 (𝑍𝑖) = ((𝐴 · (𝑋𝑖)) + (𝐶 · (𝑌𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6486  (class class class)co 7353  Basecbs 17139  +gcplusg 17180  .rcmulr 17181  Scalarcsca 17183   ·𝑠 cvsca 17184  Ringcrg 20137  LModclmod 20782   freeLMod cfrlm 21672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-hom 17204  df-cco 17205  df-0g 17364  df-prds 17370  df-pws 17372  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-subrg 20474  df-lmod 20784  df-lss 20854  df-sra 21096  df-rgmod 21097  df-dsmm 21658  df-frlm 21673
This theorem is referenced by:  rrxplusgvscavalb  25312
  Copyright terms: Public domain W3C validator