Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmvplusgscavalb | Structured version Visualization version GIF version |
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmplusgvalb.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmplusgvalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
frlmplusgvalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
frlmplusgvalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
frlmplusgvalb.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
frlmvscavalb.k | ⊢ 𝐾 = (Base‘𝑅) |
frlmvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
frlmvscavalb.v | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
frlmvscavalb.t | ⊢ · = (.r‘𝑅) |
frlmvplusgscavalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
frlmvplusgscavalb.a | ⊢ + = (+g‘𝑅) |
frlmvplusgscavalb.p | ⊢ ✚ = (+g‘𝐹) |
frlmvplusgscavalb.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
frlmvplusgscavalb | ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmplusgvalb.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmplusgvalb.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | frlmplusgvalb.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | 1 | frlmlmod 20514 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
6 | 4, 3, 5 | syl2anc 587 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ LMod) |
7 | frlmvscavalb.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
8 | frlmvscavalb.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
9 | 7, 8 | eleqtrdi 2862 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
10 | 1 | frlmsca 20518 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) |
11 | 4, 3, 10 | syl2anc 587 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
12 | 11 | fveq2d 6662 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
13 | 9, 12 | eleqtrd 2854 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝐹))) |
14 | frlmplusgvalb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | eqid 2758 | . . . . 5 ⊢ (Scalar‘𝐹) = (Scalar‘𝐹) | |
16 | frlmvscavalb.v | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
17 | eqid 2758 | . . . . 5 ⊢ (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) | |
18 | 2, 15, 16, 17 | lmodvscl 19719 | . . . 4 ⊢ ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋 ∈ 𝐵) → (𝐴 ∙ 𝑋) ∈ 𝐵) |
19 | 6, 13, 14, 18 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) ∈ 𝐵) |
20 | frlmplusgvalb.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
21 | frlmvplusgscavalb.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
22 | 21, 8 | eleqtrdi 2862 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝑅)) |
23 | 22, 12 | eleqtrd 2854 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (Base‘(Scalar‘𝐹))) |
24 | frlmvplusgscavalb.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
25 | 2, 15, 16, 17 | lmodvscl 19719 | . . . 4 ⊢ ((𝐹 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑌 ∈ 𝐵) → (𝐶 ∙ 𝑌) ∈ 𝐵) |
26 | 6, 23, 24, 25 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝐶 ∙ 𝑌) ∈ 𝐵) |
27 | frlmvplusgscavalb.a | . . 3 ⊢ + = (+g‘𝑅) | |
28 | frlmvplusgscavalb.p | . . 3 ⊢ ✚ = (+g‘𝐹) | |
29 | 1, 2, 3, 19, 20, 4, 26, 27, 28 | frlmplusgvalb 20534 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)))) |
30 | 3 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
31 | 7 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
32 | 14 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
33 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | |
34 | frlmvscavalb.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
35 | 1, 2, 8, 30, 31, 32, 33, 16, 34 | frlmvscaval 20533 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐴 ∙ 𝑋)‘𝑖) = (𝐴 · (𝑋‘𝑖))) |
36 | 21 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐶 ∈ 𝐾) |
37 | 24 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑌 ∈ 𝐵) |
38 | 1, 2, 8, 30, 36, 37, 33, 16, 34 | frlmvscaval 20533 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐶 ∙ 𝑌)‘𝑖) = (𝐶 · (𝑌‘𝑖))) |
39 | 35, 38 | oveq12d 7168 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖)))) |
40 | 39 | eqeq2d 2769 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) ↔ (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
41 | 40 | ralbidva 3125 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
42 | 29, 41 | bitrd 282 | 1 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 .rcmulr 16624 Scalarcsca 16626 ·𝑠 cvsca 16627 Ringcrg 19365 LModclmod 19702 freeLMod cfrlm 20511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-hom 16647 df-cco 16648 df-0g 16773 df-prds 16779 df-pws 16781 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-subg 18343 df-mgp 19308 df-ur 19320 df-ring 19367 df-subrg 19601 df-lmod 19704 df-lss 19772 df-sra 20012 df-rgmod 20013 df-dsmm 20497 df-frlm 20512 |
This theorem is referenced by: rrxplusgvscavalb 24095 |
Copyright terms: Public domain | W3C validator |