![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvplusgscavalb | Structured version Visualization version GIF version |
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | β’ πΉ = (π freeLMod πΌ) |
frlmplusgvalb.b | β’ π΅ = (BaseβπΉ) |
frlmplusgvalb.i | β’ (π β πΌ β π) |
frlmplusgvalb.x | β’ (π β π β π΅) |
frlmplusgvalb.z | β’ (π β π β π΅) |
frlmplusgvalb.r | β’ (π β π β Ring) |
frlmvscavalb.k | β’ πΎ = (Baseβπ ) |
frlmvscavalb.a | β’ (π β π΄ β πΎ) |
frlmvscavalb.v | β’ β = ( Β·π βπΉ) |
frlmvscavalb.t | β’ Β· = (.rβπ ) |
frlmvplusgscavalb.y | β’ (π β π β π΅) |
frlmvplusgscavalb.a | β’ + = (+gβπ ) |
frlmvplusgscavalb.p | β’ β = (+gβπΉ) |
frlmvplusgscavalb.c | β’ (π β πΆ β πΎ) |
Ref | Expression |
---|---|
frlmvplusgscavalb | β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.f | . . 3 β’ πΉ = (π freeLMod πΌ) | |
2 | frlmplusgvalb.b | . . 3 β’ π΅ = (BaseβπΉ) | |
3 | frlmplusgvalb.i | . . 3 β’ (π β πΌ β π) | |
4 | frlmplusgvalb.r | . . . . 5 β’ (π β π β Ring) | |
5 | 1 | frlmlmod 21303 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β πΉ β LMod) |
6 | 4, 3, 5 | syl2anc 584 | . . . 4 β’ (π β πΉ β LMod) |
7 | frlmvscavalb.a | . . . . . 6 β’ (π β π΄ β πΎ) | |
8 | frlmvscavalb.k | . . . . . 6 β’ πΎ = (Baseβπ ) | |
9 | 7, 8 | eleqtrdi 2843 | . . . . 5 β’ (π β π΄ β (Baseβπ )) |
10 | 1 | frlmsca 21307 | . . . . . . 7 β’ ((π β Ring β§ πΌ β π) β π = (ScalarβπΉ)) |
11 | 4, 3, 10 | syl2anc 584 | . . . . . 6 β’ (π β π = (ScalarβπΉ)) |
12 | 11 | fveq2d 6895 | . . . . 5 β’ (π β (Baseβπ ) = (Baseβ(ScalarβπΉ))) |
13 | 9, 12 | eleqtrd 2835 | . . . 4 β’ (π β π΄ β (Baseβ(ScalarβπΉ))) |
14 | frlmplusgvalb.x | . . . 4 β’ (π β π β π΅) | |
15 | eqid 2732 | . . . . 5 β’ (ScalarβπΉ) = (ScalarβπΉ) | |
16 | frlmvscavalb.v | . . . . 5 β’ β = ( Β·π βπΉ) | |
17 | eqid 2732 | . . . . 5 β’ (Baseβ(ScalarβπΉ)) = (Baseβ(ScalarβπΉ)) | |
18 | 2, 15, 16, 17 | lmodvscl 20488 | . . . 4 β’ ((πΉ β LMod β§ π΄ β (Baseβ(ScalarβπΉ)) β§ π β π΅) β (π΄ β π) β π΅) |
19 | 6, 13, 14, 18 | syl3anc 1371 | . . 3 β’ (π β (π΄ β π) β π΅) |
20 | frlmplusgvalb.z | . . 3 β’ (π β π β π΅) | |
21 | frlmvplusgscavalb.c | . . . . . 6 β’ (π β πΆ β πΎ) | |
22 | 21, 8 | eleqtrdi 2843 | . . . . 5 β’ (π β πΆ β (Baseβπ )) |
23 | 22, 12 | eleqtrd 2835 | . . . 4 β’ (π β πΆ β (Baseβ(ScalarβπΉ))) |
24 | frlmvplusgscavalb.y | . . . 4 β’ (π β π β π΅) | |
25 | 2, 15, 16, 17 | lmodvscl 20488 | . . . 4 β’ ((πΉ β LMod β§ πΆ β (Baseβ(ScalarβπΉ)) β§ π β π΅) β (πΆ β π) β π΅) |
26 | 6, 23, 24, 25 | syl3anc 1371 | . . 3 β’ (π β (πΆ β π) β π΅) |
27 | frlmvplusgscavalb.a | . . 3 β’ + = (+gβπ ) | |
28 | frlmvplusgscavalb.p | . . 3 β’ β = (+gβπΉ) | |
29 | 1, 2, 3, 19, 20, 4, 26, 27, 28 | frlmplusgvalb 21323 | . 2 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = (((π΄ β π)βπ) + ((πΆ β π)βπ)))) |
30 | 3 | adantr 481 | . . . . . 6 β’ ((π β§ π β πΌ) β πΌ β π) |
31 | 7 | adantr 481 | . . . . . 6 β’ ((π β§ π β πΌ) β π΄ β πΎ) |
32 | 14 | adantr 481 | . . . . . 6 β’ ((π β§ π β πΌ) β π β π΅) |
33 | simpr 485 | . . . . . 6 β’ ((π β§ π β πΌ) β π β πΌ) | |
34 | frlmvscavalb.t | . . . . . 6 β’ Β· = (.rβπ ) | |
35 | 1, 2, 8, 30, 31, 32, 33, 16, 34 | frlmvscaval 21322 | . . . . 5 β’ ((π β§ π β πΌ) β ((π΄ β π)βπ) = (π΄ Β· (πβπ))) |
36 | 21 | adantr 481 | . . . . . 6 β’ ((π β§ π β πΌ) β πΆ β πΎ) |
37 | 24 | adantr 481 | . . . . . 6 β’ ((π β§ π β πΌ) β π β π΅) |
38 | 1, 2, 8, 30, 36, 37, 33, 16, 34 | frlmvscaval 21322 | . . . . 5 β’ ((π β§ π β πΌ) β ((πΆ β π)βπ) = (πΆ Β· (πβπ))) |
39 | 35, 38 | oveq12d 7426 | . . . 4 β’ ((π β§ π β πΌ) β (((π΄ β π)βπ) + ((πΆ β π)βπ)) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ)))) |
40 | 39 | eqeq2d 2743 | . . 3 β’ ((π β§ π β πΌ) β ((πβπ) = (((π΄ β π)βπ) + ((πΆ β π)βπ)) β (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
41 | 40 | ralbidva 3175 | . 2 β’ (π β (βπ β πΌ (πβπ) = (((π΄ β π)βπ) + ((πΆ β π)βπ)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
42 | 29, 41 | bitrd 278 | 1 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 Β·π cvsca 17200 Ringcrg 20055 LModclmod 20470 freeLMod cfrlm 21300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-pws 17394 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-mgp 19987 df-ur 20004 df-ring 20057 df-subrg 20316 df-lmod 20472 df-lss 20542 df-sra 20784 df-rgmod 20785 df-dsmm 21286 df-frlm 21301 |
This theorem is referenced by: rrxplusgvscavalb 24911 |
Copyright terms: Public domain | W3C validator |