![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmvplusgscavalb | Structured version Visualization version GIF version |
Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
frlmplusgvalb.f | β’ πΉ = (π freeLMod πΌ) |
frlmplusgvalb.b | β’ π΅ = (BaseβπΉ) |
frlmplusgvalb.i | β’ (π β πΌ β π) |
frlmplusgvalb.x | β’ (π β π β π΅) |
frlmplusgvalb.z | β’ (π β π β π΅) |
frlmplusgvalb.r | β’ (π β π β Ring) |
frlmvscavalb.k | β’ πΎ = (Baseβπ ) |
frlmvscavalb.a | β’ (π β π΄ β πΎ) |
frlmvscavalb.v | β’ β = ( Β·π βπΉ) |
frlmvscavalb.t | β’ Β· = (.rβπ ) |
frlmvplusgscavalb.y | β’ (π β π β π΅) |
frlmvplusgscavalb.a | β’ + = (+gβπ ) |
frlmvplusgscavalb.p | β’ β = (+gβπΉ) |
frlmvplusgscavalb.c | β’ (π β πΆ β πΎ) |
Ref | Expression |
---|---|
frlmvplusgscavalb | β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.f | . . 3 β’ πΉ = (π freeLMod πΌ) | |
2 | frlmplusgvalb.b | . . 3 β’ π΅ = (BaseβπΉ) | |
3 | frlmplusgvalb.i | . . 3 β’ (π β πΌ β π) | |
4 | frlmplusgvalb.r | . . . . 5 β’ (π β π β Ring) | |
5 | 1 | frlmlmod 21670 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β πΉ β LMod) |
6 | 4, 3, 5 | syl2anc 583 | . . . 4 β’ (π β πΉ β LMod) |
7 | frlmvscavalb.a | . . . . . 6 β’ (π β π΄ β πΎ) | |
8 | frlmvscavalb.k | . . . . . 6 β’ πΎ = (Baseβπ ) | |
9 | 7, 8 | eleqtrdi 2838 | . . . . 5 β’ (π β π΄ β (Baseβπ )) |
10 | 1 | frlmsca 21674 | . . . . . . 7 β’ ((π β Ring β§ πΌ β π) β π = (ScalarβπΉ)) |
11 | 4, 3, 10 | syl2anc 583 | . . . . . 6 β’ (π β π = (ScalarβπΉ)) |
12 | 11 | fveq2d 6895 | . . . . 5 β’ (π β (Baseβπ ) = (Baseβ(ScalarβπΉ))) |
13 | 9, 12 | eleqtrd 2830 | . . . 4 β’ (π β π΄ β (Baseβ(ScalarβπΉ))) |
14 | frlmplusgvalb.x | . . . 4 β’ (π β π β π΅) | |
15 | eqid 2727 | . . . . 5 β’ (ScalarβπΉ) = (ScalarβπΉ) | |
16 | frlmvscavalb.v | . . . . 5 β’ β = ( Β·π βπΉ) | |
17 | eqid 2727 | . . . . 5 β’ (Baseβ(ScalarβπΉ)) = (Baseβ(ScalarβπΉ)) | |
18 | 2, 15, 16, 17 | lmodvscl 20750 | . . . 4 β’ ((πΉ β LMod β§ π΄ β (Baseβ(ScalarβπΉ)) β§ π β π΅) β (π΄ β π) β π΅) |
19 | 6, 13, 14, 18 | syl3anc 1369 | . . 3 β’ (π β (π΄ β π) β π΅) |
20 | frlmplusgvalb.z | . . 3 β’ (π β π β π΅) | |
21 | frlmvplusgscavalb.c | . . . . . 6 β’ (π β πΆ β πΎ) | |
22 | 21, 8 | eleqtrdi 2838 | . . . . 5 β’ (π β πΆ β (Baseβπ )) |
23 | 22, 12 | eleqtrd 2830 | . . . 4 β’ (π β πΆ β (Baseβ(ScalarβπΉ))) |
24 | frlmvplusgscavalb.y | . . . 4 β’ (π β π β π΅) | |
25 | 2, 15, 16, 17 | lmodvscl 20750 | . . . 4 β’ ((πΉ β LMod β§ πΆ β (Baseβ(ScalarβπΉ)) β§ π β π΅) β (πΆ β π) β π΅) |
26 | 6, 23, 24, 25 | syl3anc 1369 | . . 3 β’ (π β (πΆ β π) β π΅) |
27 | frlmvplusgscavalb.a | . . 3 β’ + = (+gβπ ) | |
28 | frlmvplusgscavalb.p | . . 3 β’ β = (+gβπΉ) | |
29 | 1, 2, 3, 19, 20, 4, 26, 27, 28 | frlmplusgvalb 21690 | . 2 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = (((π΄ β π)βπ) + ((πΆ β π)βπ)))) |
30 | 3 | adantr 480 | . . . . . 6 β’ ((π β§ π β πΌ) β πΌ β π) |
31 | 7 | adantr 480 | . . . . . 6 β’ ((π β§ π β πΌ) β π΄ β πΎ) |
32 | 14 | adantr 480 | . . . . . 6 β’ ((π β§ π β πΌ) β π β π΅) |
33 | simpr 484 | . . . . . 6 β’ ((π β§ π β πΌ) β π β πΌ) | |
34 | frlmvscavalb.t | . . . . . 6 β’ Β· = (.rβπ ) | |
35 | 1, 2, 8, 30, 31, 32, 33, 16, 34 | frlmvscaval 21689 | . . . . 5 β’ ((π β§ π β πΌ) β ((π΄ β π)βπ) = (π΄ Β· (πβπ))) |
36 | 21 | adantr 480 | . . . . . 6 β’ ((π β§ π β πΌ) β πΆ β πΎ) |
37 | 24 | adantr 480 | . . . . . 6 β’ ((π β§ π β πΌ) β π β π΅) |
38 | 1, 2, 8, 30, 36, 37, 33, 16, 34 | frlmvscaval 21689 | . . . . 5 β’ ((π β§ π β πΌ) β ((πΆ β π)βπ) = (πΆ Β· (πβπ))) |
39 | 35, 38 | oveq12d 7432 | . . . 4 β’ ((π β§ π β πΌ) β (((π΄ β π)βπ) + ((πΆ β π)βπ)) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ)))) |
40 | 39 | eqeq2d 2738 | . . 3 β’ ((π β§ π β πΌ) β ((πβπ) = (((π΄ β π)βπ) + ((πΆ β π)βπ)) β (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
41 | 40 | ralbidva 3170 | . 2 β’ (π β (βπ β πΌ (πβπ) = (((π΄ β π)βπ) + ((πΆ β π)βπ)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
42 | 29, 41 | bitrd 279 | 1 β’ (π β (π = ((π΄ β π) β (πΆ β π)) β βπ β πΌ (πβπ) = ((π΄ Β· (πβπ)) + (πΆ Β· (πβπ))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βwral 3056 βcfv 6542 (class class class)co 7414 Basecbs 17171 +gcplusg 17224 .rcmulr 17225 Scalarcsca 17227 Β·π cvsca 17228 Ringcrg 20164 LModclmod 20732 freeLMod cfrlm 21667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-hom 17248 df-cco 17249 df-0g 17414 df-prds 17420 df-pws 17422 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-minusg 18885 df-sbg 18886 df-subg 19069 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-subrg 20497 df-lmod 20734 df-lss 20805 df-sra 21047 df-rgmod 21048 df-dsmm 21653 df-frlm 21668 |
This theorem is referenced by: rrxplusgvscavalb 25310 |
Copyright terms: Public domain | W3C validator |