| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmvplusgscavalb | Structured version Visualization version GIF version | ||
| Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
| Ref | Expression |
|---|---|
| frlmplusgvalb.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| frlmplusgvalb.b | ⊢ 𝐵 = (Base‘𝐹) |
| frlmplusgvalb.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| frlmplusgvalb.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| frlmplusgvalb.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| frlmplusgvalb.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| frlmvscavalb.k | ⊢ 𝐾 = (Base‘𝑅) |
| frlmvscavalb.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| frlmvscavalb.v | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
| frlmvscavalb.t | ⊢ · = (.r‘𝑅) |
| frlmvplusgscavalb.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| frlmvplusgscavalb.a | ⊢ + = (+g‘𝑅) |
| frlmvplusgscavalb.p | ⊢ ✚ = (+g‘𝐹) |
| frlmvplusgscavalb.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| frlmvplusgscavalb | ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmplusgvalb.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | frlmplusgvalb.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | frlmplusgvalb.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 4 | frlmplusgvalb.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | 1 | frlmlmod 21634 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) |
| 6 | 4, 3, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ LMod) |
| 7 | frlmvscavalb.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 8 | frlmvscavalb.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
| 9 | 7, 8 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
| 10 | 1 | frlmsca 21638 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) |
| 11 | 4, 3, 10 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
| 12 | 11 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
| 13 | 9, 12 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝐹))) |
| 14 | frlmplusgvalb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝐹) = (Scalar‘𝐹) | |
| 16 | frlmvscavalb.v | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) | |
| 18 | 2, 15, 16, 17 | lmodvscl 20760 | . . . 4 ⊢ ((𝐹 ∈ LMod ∧ 𝐴 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑋 ∈ 𝐵) → (𝐴 ∙ 𝑋) ∈ 𝐵) |
| 19 | 6, 13, 14, 18 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐴 ∙ 𝑋) ∈ 𝐵) |
| 20 | frlmplusgvalb.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 21 | frlmvplusgscavalb.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 22 | 21, 8 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Base‘𝑅)) |
| 23 | 22, 12 | eleqtrd 2830 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (Base‘(Scalar‘𝐹))) |
| 24 | frlmvplusgscavalb.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 25 | 2, 15, 16, 17 | lmodvscl 20760 | . . . 4 ⊢ ((𝐹 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐹)) ∧ 𝑌 ∈ 𝐵) → (𝐶 ∙ 𝑌) ∈ 𝐵) |
| 26 | 6, 23, 24, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐶 ∙ 𝑌) ∈ 𝐵) |
| 27 | frlmvplusgscavalb.a | . . 3 ⊢ + = (+g‘𝑅) | |
| 28 | frlmvplusgscavalb.p | . . 3 ⊢ ✚ = (+g‘𝐹) | |
| 29 | 1, 2, 3, 19, 20, 4, 26, 27, 28 | frlmplusgvalb 21654 | . 2 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)))) |
| 30 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 31 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
| 32 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑋 ∈ 𝐵) |
| 33 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) | |
| 34 | frlmvscavalb.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 35 | 1, 2, 8, 30, 31, 32, 33, 16, 34 | frlmvscaval 21653 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐴 ∙ 𝑋)‘𝑖) = (𝐴 · (𝑋‘𝑖))) |
| 36 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐶 ∈ 𝐾) |
| 37 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑌 ∈ 𝐵) |
| 38 | 1, 2, 8, 30, 36, 37, 33, 16, 34 | frlmvscaval 21653 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝐶 ∙ 𝑌)‘𝑖) = (𝐶 · (𝑌‘𝑖))) |
| 39 | 35, 38 | oveq12d 7387 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖)))) |
| 40 | 39 | eqeq2d 2740 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → ((𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) ↔ (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| 41 | 40 | ralbidva 3154 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (((𝐴 ∙ 𝑋)‘𝑖) + ((𝐶 ∙ 𝑌)‘𝑖)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| 42 | 29, 41 | bitrd 279 | 1 ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 Ringcrg 20118 LModclmod 20742 freeLMod cfrlm 21631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrg 20455 df-lmod 20744 df-lss 20814 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 |
| This theorem is referenced by: rrxplusgvscavalb 25271 |
| Copyright terms: Public domain | W3C validator |