Proof of Theorem gsummulsubdishift1s
| Step | Hyp | Ref
| Expression |
| 1 | | gsummulsubdishift1s.3 |
. . . . 5
⊢ (𝑖 = 𝑘 → 𝑉 = 𝑃) |
| 2 | 1 | cbvmptv 5199 |
. . . 4
⊢ (𝑖 ∈ (0...𝑁) ↦ 𝑉) = (𝑘 ∈ (0...𝑁) ↦ 𝑃) |
| 3 | 2 | oveq2i 7366 |
. . 3
⊢ (𝑅 Σg
(𝑖 ∈ (0...𝑁) ↦ 𝑉)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑃)) |
| 4 | 3 | oveq1i 7365 |
. 2
⊢ ((𝑅 Σg
(𝑖 ∈ (0...𝑁) ↦ 𝑉)) · (𝐴 − 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑃)) · (𝐴 − 𝐶)) |
| 5 | | gsummulsubdishift.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 6 | | gsummulsubdishift.p |
. . 3
⊢ + =
(+g‘𝑅) |
| 7 | | gsummulsubdishift.m |
. . 3
⊢ − =
(-g‘𝑅) |
| 8 | | gsummulsubdishift.t |
. . 3
⊢ · =
(.r‘𝑅) |
| 9 | | gsummulsubdishift.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 10 | | gsummulsubdishift.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 11 | | gsummulsubdishift.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 12 | | gsummulsubdishift.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 13 | | gsummulsubdishifts.d |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑁)) → 𝑉 ∈ 𝐵) |
| 14 | 13 | fmpttd 7057 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0...𝑁) ↦ 𝑉):(0...𝑁)⟶𝐵) |
| 15 | | gsummulsubdishift1s.e |
. . . 4
⊢ (𝜑 → 𝐸 = ((𝐻 · 𝐴) − (𝐺 · 𝐶))) |
| 16 | | eqid 2733 |
. . . . . . 7
⊢ (𝑖 ∈ (0...𝑁) ↦ 𝑉) = (𝑖 ∈ (0...𝑁) ↦ 𝑉) |
| 17 | | gsummulsubdishift1s.2 |
. . . . . . 7
⊢ (𝑖 = 𝑁 → 𝑉 = 𝐻) |
| 18 | | nn0fz0 13532 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈ (0...𝑁)) |
| 19 | 12, 18 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 20 | 17 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 𝑁) → 𝑉 = 𝐻) |
| 21 | 12, 20 | csbied 3882 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝑁 / 𝑖⦌𝑉 = 𝐻) |
| 22 | 13 | ralrimiva 3125 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑁)𝑉 ∈ 𝐵) |
| 23 | | rspcsbela 4387 |
. . . . . . . . 9
⊢ ((𝑁 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)𝑉 ∈ 𝐵) → ⦋𝑁 / 𝑖⦌𝑉 ∈ 𝐵) |
| 24 | 19, 22, 23 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝑁 / 𝑖⦌𝑉 ∈ 𝐵) |
| 25 | 21, 24 | eqeltrrd 2834 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ 𝐵) |
| 26 | 16, 17, 19, 25 | fvmptd3 6961 |
. . . . . 6
⊢ (𝜑 → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) = 𝐻) |
| 27 | 26 | oveq1d 7370 |
. . . . 5
⊢ (𝜑 → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) · 𝐴) = (𝐻 · 𝐴)) |
| 28 | | gsummulsubdishift1s.1 |
. . . . . . 7
⊢ (𝑖 = 0 → 𝑉 = 𝐺) |
| 29 | | 0elfz 13531 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
| 30 | 12, 29 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 31 | 28 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑉 = 𝐺) |
| 32 | 30, 31 | csbied 3882 |
. . . . . . . 8
⊢ (𝜑 → ⦋0 / 𝑖⦌𝑉 = 𝐺) |
| 33 | | rspcsbela 4387 |
. . . . . . . . 9
⊢ ((0
∈ (0...𝑁) ∧
∀𝑖 ∈ (0...𝑁)𝑉 ∈ 𝐵) → ⦋0 / 𝑖⦌𝑉 ∈ 𝐵) |
| 34 | 30, 22, 33 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ⦋0 / 𝑖⦌𝑉 ∈ 𝐵) |
| 35 | 32, 34 | eqeltrrd 2834 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 36 | 16, 28, 30, 35 | fvmptd3 6961 |
. . . . . 6
⊢ (𝜑 → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) = 𝐺) |
| 37 | 36 | oveq1d 7370 |
. . . . 5
⊢ (𝜑 → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) · 𝐶) = (𝐺 · 𝐶)) |
| 38 | 27, 37 | oveq12d 7373 |
. . . 4
⊢ (𝜑 → ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) · 𝐴) − (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) · 𝐶)) = ((𝐻 · 𝐴) − (𝐺 · 𝐶))) |
| 39 | 15, 38 | eqtr4d 2771 |
. . 3
⊢ (𝜑 → 𝐸 = ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) · 𝐴) − (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) · 𝐶))) |
| 40 | | gsummulsubdishift1s.f |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹 = ((𝑃 · 𝐴) − (𝑄 · 𝐶))) |
| 41 | | fzossfz 13585 |
. . . . . . . 8
⊢
(0..^𝑁) ⊆
(0...𝑁) |
| 42 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁)) |
| 43 | 41, 42 | sselid 3928 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁)) |
| 44 | 1 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 = 𝑘) → 𝑉 = 𝑃) |
| 45 | 42, 44 | csbied 3882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ⦋𝑘 / 𝑖⦌𝑉 = 𝑃) |
| 46 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ∀𝑖 ∈ (0...𝑁)𝑉 ∈ 𝐵) |
| 47 | | rspcsbela 4387 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)𝑉 ∈ 𝐵) → ⦋𝑘 / 𝑖⦌𝑉 ∈ 𝐵) |
| 48 | 43, 46, 47 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ⦋𝑘 / 𝑖⦌𝑉 ∈ 𝐵) |
| 49 | 45, 48 | eqeltrrd 2834 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑃 ∈ 𝐵) |
| 50 | 16, 1, 43, 49 | fvmptd3 6961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) = 𝑃) |
| 51 | 50 | oveq1d 7370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) · 𝐴) = (𝑃 · 𝐴)) |
| 52 | | gsummulsubdishift1s.4 |
. . . . . . 7
⊢ (𝑖 = (𝑘 + 1) → 𝑉 = 𝑄) |
| 53 | | fzofzp1 13671 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁)) |
| 54 | 53 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 55 | 52 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑖 = (𝑘 + 1)) → 𝑉 = 𝑄) |
| 56 | 54, 55 | csbied 3882 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ⦋(𝑘 + 1) / 𝑖⦌𝑉 = 𝑄) |
| 57 | | rspcsbela 4387 |
. . . . . . . . 9
⊢ (((𝑘 + 1) ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)𝑉 ∈ 𝐵) → ⦋(𝑘 + 1) / 𝑖⦌𝑉 ∈ 𝐵) |
| 58 | 54, 46, 57 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ⦋(𝑘 + 1) / 𝑖⦌𝑉 ∈ 𝐵) |
| 59 | 56, 58 | eqeltrrd 2834 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑄 ∈ 𝐵) |
| 60 | 16, 52, 54, 59 | fvmptd3 6961 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) = 𝑄) |
| 61 | 60 | oveq1d 7370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) · 𝐶) = (𝑄 · 𝐶)) |
| 62 | 51, 61 | oveq12d 7373 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) · 𝐴) − (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) · 𝐶)) = ((𝑃 · 𝐴) − (𝑄 · 𝐶))) |
| 63 | 40, 62 | eqtr4d 2771 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹 = ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) · 𝐴) − (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) · 𝐶))) |
| 64 | 5, 6, 7, 8, 9, 10,
11, 12, 14, 39, 63 | gsummulsubdishift1 33079 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...𝑁) ↦ 𝑉)) · (𝐴 − 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸)) |
| 65 | 4, 64 | eqtr3id 2782 |
1
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑃)) · (𝐴 − 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸)) |