Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsummulsubdishift1s Structured version   Visualization version   GIF version

Theorem gsummulsubdishift1s 33081
Description: Distribute a subtraction over an indexed sum, shift one of the resulting sums, and regroup terms. (Contributed by Thierry Arnoux, 15-Feb-2026.)
Hypotheses
Ref Expression
gsummulsubdishift.b 𝐵 = (Base‘𝑅)
gsummulsubdishift.p + = (+g𝑅)
gsummulsubdishift.m = (-g𝑅)
gsummulsubdishift.t · = (.r𝑅)
gsummulsubdishift.r (𝜑𝑅 ∈ Ring)
gsummulsubdishift.a (𝜑𝐴𝐵)
gsummulsubdishift.c (𝜑𝐶𝐵)
gsummulsubdishift.n (𝜑𝑁 ∈ ℕ0)
gsummulsubdishifts.d ((𝜑𝑖 ∈ (0...𝑁)) → 𝑉𝐵)
gsummulsubdishift1s.1 (𝑖 = 0 → 𝑉 = 𝐺)
gsummulsubdishift1s.2 (𝑖 = 𝑁𝑉 = 𝐻)
gsummulsubdishift1s.3 (𝑖 = 𝑘𝑉 = 𝑃)
gsummulsubdishift1s.4 (𝑖 = (𝑘 + 1) → 𝑉 = 𝑄)
gsummulsubdishift1s.e (𝜑𝐸 = ((𝐻 · 𝐴) (𝐺 · 𝐶)))
gsummulsubdishift1s.f ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐹 = ((𝑃 · 𝐴) (𝑄 · 𝐶)))
Assertion
Ref Expression
gsummulsubdishift1s (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑃)) · (𝐴 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸))
Distinct variable groups:   ,𝑘   · ,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝑁   𝑅,𝑘   𝜑,𝑘   𝐵,𝑖,𝑘   𝑖,𝐺   𝑖,𝐻   𝑖,𝑁   𝑃,𝑖   𝑄,𝑖   𝑘,𝑉   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐶(𝑖)   𝑃(𝑘)   + (𝑖,𝑘)   𝑄(𝑘)   𝑅(𝑖)   · (𝑖)   𝐸(𝑖,𝑘)   𝐹(𝑖,𝑘)   𝐺(𝑘)   𝐻(𝑘)   (𝑖)   𝑉(𝑖)

Proof of Theorem gsummulsubdishift1s
StepHypRef Expression
1 gsummulsubdishift1s.3 . . . . 5 (𝑖 = 𝑘𝑉 = 𝑃)
21cbvmptv 5199 . . . 4 (𝑖 ∈ (0...𝑁) ↦ 𝑉) = (𝑘 ∈ (0...𝑁) ↦ 𝑃)
32oveq2i 7366 . . 3 (𝑅 Σg (𝑖 ∈ (0...𝑁) ↦ 𝑉)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑃))
43oveq1i 7365 . 2 ((𝑅 Σg (𝑖 ∈ (0...𝑁) ↦ 𝑉)) · (𝐴 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑃)) · (𝐴 𝐶))
5 gsummulsubdishift.b . . 3 𝐵 = (Base‘𝑅)
6 gsummulsubdishift.p . . 3 + = (+g𝑅)
7 gsummulsubdishift.m . . 3 = (-g𝑅)
8 gsummulsubdishift.t . . 3 · = (.r𝑅)
9 gsummulsubdishift.r . . 3 (𝜑𝑅 ∈ Ring)
10 gsummulsubdishift.a . . 3 (𝜑𝐴𝐵)
11 gsummulsubdishift.c . . 3 (𝜑𝐶𝐵)
12 gsummulsubdishift.n . . 3 (𝜑𝑁 ∈ ℕ0)
13 gsummulsubdishifts.d . . . 4 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑉𝐵)
1413fmpttd 7057 . . 3 (𝜑 → (𝑖 ∈ (0...𝑁) ↦ 𝑉):(0...𝑁)⟶𝐵)
15 gsummulsubdishift1s.e . . . 4 (𝜑𝐸 = ((𝐻 · 𝐴) (𝐺 · 𝐶)))
16 eqid 2733 . . . . . . 7 (𝑖 ∈ (0...𝑁) ↦ 𝑉) = (𝑖 ∈ (0...𝑁) ↦ 𝑉)
17 gsummulsubdishift1s.2 . . . . . . 7 (𝑖 = 𝑁𝑉 = 𝐻)
18 nn0fz0 13532 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
1912, 18sylib 218 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
2017adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 𝑁) → 𝑉 = 𝐻)
2112, 20csbied 3882 . . . . . . . 8 (𝜑𝑁 / 𝑖𝑉 = 𝐻)
2213ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑖 ∈ (0...𝑁)𝑉𝐵)
23 rspcsbela 4387 . . . . . . . . 9 ((𝑁 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)𝑉𝐵) → 𝑁 / 𝑖𝑉𝐵)
2419, 22, 23syl2anc 584 . . . . . . . 8 (𝜑𝑁 / 𝑖𝑉𝐵)
2521, 24eqeltrrd 2834 . . . . . . 7 (𝜑𝐻𝐵)
2616, 17, 19, 25fvmptd3 6961 . . . . . 6 (𝜑 → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) = 𝐻)
2726oveq1d 7370 . . . . 5 (𝜑 → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) · 𝐴) = (𝐻 · 𝐴))
28 gsummulsubdishift1s.1 . . . . . . 7 (𝑖 = 0 → 𝑉 = 𝐺)
29 0elfz 13531 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3012, 29syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3128adantl 481 . . . . . . . . 9 ((𝜑𝑖 = 0) → 𝑉 = 𝐺)
3230, 31csbied 3882 . . . . . . . 8 (𝜑0 / 𝑖𝑉 = 𝐺)
33 rspcsbela 4387 . . . . . . . . 9 ((0 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)𝑉𝐵) → 0 / 𝑖𝑉𝐵)
3430, 22, 33syl2anc 584 . . . . . . . 8 (𝜑0 / 𝑖𝑉𝐵)
3532, 34eqeltrrd 2834 . . . . . . 7 (𝜑𝐺𝐵)
3616, 28, 30, 35fvmptd3 6961 . . . . . 6 (𝜑 → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) = 𝐺)
3736oveq1d 7370 . . . . 5 (𝜑 → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) · 𝐶) = (𝐺 · 𝐶))
3827, 37oveq12d 7373 . . . 4 (𝜑 → ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) · 𝐴) (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) · 𝐶)) = ((𝐻 · 𝐴) (𝐺 · 𝐶)))
3915, 38eqtr4d 2771 . . 3 (𝜑𝐸 = ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑁) · 𝐴) (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘0) · 𝐶)))
40 gsummulsubdishift1s.f . . . 4 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐹 = ((𝑃 · 𝐴) (𝑄 · 𝐶)))
41 fzossfz 13585 . . . . . . . 8 (0..^𝑁) ⊆ (0...𝑁)
42 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁))
4341, 42sselid 3928 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
441adantl 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑖 = 𝑘) → 𝑉 = 𝑃)
4542, 44csbied 3882 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 / 𝑖𝑉 = 𝑃)
4622adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → ∀𝑖 ∈ (0...𝑁)𝑉𝐵)
47 rspcsbela 4387 . . . . . . . . 9 ((𝑘 ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)𝑉𝐵) → 𝑘 / 𝑖𝑉𝐵)
4843, 46, 47syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 / 𝑖𝑉𝐵)
4945, 48eqeltrrd 2834 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑃𝐵)
5016, 1, 43, 49fvmptd3 6961 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) = 𝑃)
5150oveq1d 7370 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) · 𝐴) = (𝑃 · 𝐴))
52 gsummulsubdishift1s.4 . . . . . . 7 (𝑖 = (𝑘 + 1) → 𝑉 = 𝑄)
53 fzofzp1 13671 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
5453adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
5552adantl 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ 𝑖 = (𝑘 + 1)) → 𝑉 = 𝑄)
5654, 55csbied 3882 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) / 𝑖𝑉 = 𝑄)
57 rspcsbela 4387 . . . . . . . . 9 (((𝑘 + 1) ∈ (0...𝑁) ∧ ∀𝑖 ∈ (0...𝑁)𝑉𝐵) → (𝑘 + 1) / 𝑖𝑉𝐵)
5854, 46, 57syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) / 𝑖𝑉𝐵)
5956, 58eqeltrrd 2834 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑄𝐵)
6016, 52, 54, 59fvmptd3 6961 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) = 𝑄)
6160oveq1d 7370 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) · 𝐶) = (𝑄 · 𝐶))
6251, 61oveq12d 7373 . . . 4 ((𝜑𝑘 ∈ (0..^𝑁)) → ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) · 𝐴) (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) · 𝐶)) = ((𝑃 · 𝐴) (𝑄 · 𝐶)))
6340, 62eqtr4d 2771 . . 3 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐹 = ((((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘𝑘) · 𝐴) (((𝑖 ∈ (0...𝑁) ↦ 𝑉)‘(𝑘 + 1)) · 𝐶)))
645, 6, 7, 8, 9, 10, 11, 12, 14, 39, 63gsummulsubdishift1 33079 . 2 (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...𝑁) ↦ 𝑉)) · (𝐴 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸))
654, 64eqtr3id 2782 1 (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ 𝑃)) · (𝐴 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  csb 3846  cmpt 5176  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020  0cn0 12392  ...cfz 13414  ..^cfzo 13561  Basecbs 17127  +gcplusg 17168  .rcmulr 17169   Σg cgsu 17351  -gcsg 18856  Ringcrg 20159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-gsum 17353  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator