| Step | Hyp | Ref
| Expression |
| 1 | | gsummulsubdishift.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | gsummulsubdishift.t |
. . . 4
⊢ · =
(.r‘𝑅) |
| 3 | | gsummulsubdishift.m |
. . . 4
⊢ − =
(-g‘𝑅) |
| 4 | | gsummulsubdishift.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | 4 | ringcmnd 20210 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 6 | | fzfid 13887 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 7 | | gsummulsubdishift.d |
. . . . . . 7
⊢ (𝜑 → 𝐷:(0...𝑁)⟶𝐵) |
| 8 | 7 | ffvelcdmda 7026 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐷‘𝑘) ∈ 𝐵) |
| 9 | 8 | ralrimiva 3125 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝐷‘𝑘) ∈ 𝐵) |
| 10 | 1, 5, 6, 9 | gsummptcl 19887 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) ∈ 𝐵) |
| 11 | | gsummulsubdishift.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 12 | | gsummulsubdishift.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 13 | 1, 2, 3, 4, 10, 11, 12 | ringsubdi 20233 |
. . 3
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · (𝐴 − 𝐶)) = (((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐴) − ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐶))) |
| 14 | | gsummulsubdishift.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 15 | | nn0uz 12780 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 16 | 14, 15 | eleqtrdi 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
| 17 | | fzisfzounsn 13687 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) |
| 19 | 18 | mpteq1d 5185 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝐷‘𝑘) · 𝐴)) = (𝑘 ∈ ((0..^𝑁) ∪ {𝑁}) ↦ ((𝐷‘𝑘) · 𝐴))) |
| 20 | 19 | oveq2d 7371 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) = (𝑅 Σg (𝑘 ∈ ((0..^𝑁) ∪ {𝑁}) ↦ ((𝐷‘𝑘) · 𝐴)))) |
| 21 | | eqid 2733 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 22 | | eqid 2733 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘)) = (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘)) |
| 23 | | fvexd 6846 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 24 | 22, 6, 8, 23 | fsuppmptdm 9271 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘)) finSupp (0g‘𝑅)) |
| 25 | 1, 21, 2, 4, 6, 11,
8, 24 | gsummulc1 20242 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐴)) |
| 26 | | gsummulsubdishift.p |
. . . . . 6
⊢ + =
(+g‘𝑅) |
| 27 | | fzofi 13888 |
. . . . . . 7
⊢
(0..^𝑁) ∈
Fin |
| 28 | 27 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
| 29 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑅 ∈ Ring) |
| 30 | | fzossfz 13585 |
. . . . . . . . . 10
⊢
(0..^𝑁) ⊆
(0...𝑁) |
| 31 | 30 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (0..^𝑁) ⊆ (0...𝑁)) |
| 32 | 31 | sselda 3930 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁)) |
| 33 | 32, 8 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐷‘𝑘) ∈ 𝐵) |
| 34 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ 𝐵) |
| 35 | 1, 2, 29, 33, 34 | ringcld 20186 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐷‘𝑘) · 𝐴) ∈ 𝐵) |
| 36 | | fzonel 13580 |
. . . . . . 7
⊢ ¬
𝑁 ∈ (0..^𝑁) |
| 37 | 36 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑁 ∈ (0..^𝑁)) |
| 38 | | nn0fz0 13532 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈ (0...𝑁)) |
| 39 | 14, 38 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 40 | 7, 39 | ffvelcdmd 7027 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘𝑁) ∈ 𝐵) |
| 41 | 1, 2, 4, 40, 11 | ringcld 20186 |
. . . . . 6
⊢ (𝜑 → ((𝐷‘𝑁) · 𝐴) ∈ 𝐵) |
| 42 | | fveq2 6831 |
. . . . . . 7
⊢ (𝑘 = 𝑁 → (𝐷‘𝑘) = (𝐷‘𝑁)) |
| 43 | 42 | oveq1d 7370 |
. . . . . 6
⊢ (𝑘 = 𝑁 → ((𝐷‘𝑘) · 𝐴) = ((𝐷‘𝑁) · 𝐴)) |
| 44 | 1, 26, 5, 28, 35, 14, 37, 41, 43 | gsumunsn 19880 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ((0..^𝑁) ∪ {𝑁}) ↦ ((𝐷‘𝑘) · 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) + ((𝐷‘𝑁) · 𝐴))) |
| 45 | 20, 25, 44 | 3eqtr3d 2776 |
. . . 4
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐴) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) + ((𝐷‘𝑁) · 𝐴))) |
| 46 | 1, 21, 2, 4, 6, 12,
8, 24 | gsummulc1 20242 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝐷‘𝑘) · 𝐶))) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐶)) |
| 47 | | fz0sn0fz1 13552 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (0...𝑁) = ({0} ∪
(1...𝑁))) |
| 48 | 14, 47 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (0...𝑁) = ({0} ∪ (1...𝑁))) |
| 49 | | uncom 4107 |
. . . . . . . . 9
⊢
((1...𝑁) ∪ {0})
= ({0} ∪ (1...𝑁)) |
| 50 | 48, 49 | eqtr4di 2786 |
. . . . . . . 8
⊢ (𝜑 → (0...𝑁) = ((1...𝑁) ∪ {0})) |
| 51 | 50 | mpteq1d 5185 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ ((𝐷‘𝑘) · 𝐶)) = (𝑘 ∈ ((1...𝑁) ∪ {0}) ↦ ((𝐷‘𝑘) · 𝐶))) |
| 52 | 51 | oveq2d 7371 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝐷‘𝑘) · 𝐶))) = (𝑅 Σg (𝑘 ∈ ((1...𝑁) ∪ {0}) ↦ ((𝐷‘𝑘) · 𝐶)))) |
| 53 | | fzfid 13887 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 54 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑅 ∈ Ring) |
| 55 | | fz1ssfz0 13530 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(0...𝑁) |
| 56 | 55 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) ⊆ (0...𝑁)) |
| 57 | 56 | sselda 3930 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (0...𝑁)) |
| 58 | 57, 8 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝐷‘𝑘) ∈ 𝐵) |
| 59 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝐶 ∈ 𝐵) |
| 60 | 1, 2, 54, 58, 59 | ringcld 20186 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → ((𝐷‘𝑘) · 𝐶) ∈ 𝐵) |
| 61 | | c0ex 11117 |
. . . . . . . 8
⊢ 0 ∈
V |
| 62 | 61 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
V) |
| 63 | | 0nnn 12172 |
. . . . . . . . 9
⊢ ¬ 0
∈ ℕ |
| 64 | | elfznn 13460 |
. . . . . . . . 9
⊢ (0 ∈
(1...𝑁) → 0 ∈
ℕ) |
| 65 | 63, 64 | mto 197 |
. . . . . . . 8
⊢ ¬ 0
∈ (1...𝑁) |
| 66 | 65 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ¬ 0 ∈ (1...𝑁)) |
| 67 | | 0elfz 13531 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
| 68 | 14, 67 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 69 | 7, 68 | ffvelcdmd 7027 |
. . . . . . . 8
⊢ (𝜑 → (𝐷‘0) ∈ 𝐵) |
| 70 | 1, 2, 4, 69, 12 | ringcld 20186 |
. . . . . . 7
⊢ (𝜑 → ((𝐷‘0) · 𝐶) ∈ 𝐵) |
| 71 | | fveq2 6831 |
. . . . . . . 8
⊢ (𝑘 = 0 → (𝐷‘𝑘) = (𝐷‘0)) |
| 72 | 71 | oveq1d 7370 |
. . . . . . 7
⊢ (𝑘 = 0 → ((𝐷‘𝑘) · 𝐶) = ((𝐷‘0) · 𝐶)) |
| 73 | 1, 26, 5, 53, 60, 62, 66, 70, 72 | gsumunsn 19880 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ ((1...𝑁) ∪ {0}) ↦ ((𝐷‘𝑘) · 𝐶))) = ((𝑅 Σg (𝑘 ∈ (1...𝑁) ↦ ((𝐷‘𝑘) · 𝐶))) + ((𝐷‘0) · 𝐶))) |
| 74 | | nfcv 2895 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝐷‘(𝑙 + 1)) · 𝐶) |
| 75 | | fveq2 6831 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑙 + 1) → (𝐷‘𝑘) = (𝐷‘(𝑙 + 1))) |
| 76 | 75 | oveq1d 7370 |
. . . . . . . . 9
⊢ (𝑘 = (𝑙 + 1) → ((𝐷‘𝑘) · 𝐶) = ((𝐷‘(𝑙 + 1)) · 𝐶)) |
| 77 | | ssidd 3954 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ 𝐵) |
| 78 | 14 | nn0zd 12504 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 79 | | fzoval 13567 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ →
(0..^𝑁) = (0...(𝑁 − 1))) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0..^𝑁) = (0...(𝑁 − 1))) |
| 81 | 80 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑙 ∈ (0..^𝑁) ↔ 𝑙 ∈ (0...(𝑁 − 1)))) |
| 82 | 81 | biimpar 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑙 ∈ (0...(𝑁 − 1))) → 𝑙 ∈ (0..^𝑁)) |
| 83 | | fz0add1fz1 13642 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁)) |
| 84 | 14, 82, 83 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ (0...(𝑁 − 1))) → (𝑙 + 1) ∈ (1...𝑁)) |
| 85 | 57 | elfzelzd 13432 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℤ) |
| 86 | 78 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℤ) |
| 87 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁)) |
| 88 | | elfzm1b 13509 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (1...𝑁) ↔ (𝑘 − 1) ∈ (0...(𝑁 − 1)))) |
| 89 | 88 | biimpa 476 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0...(𝑁 − 1))) |
| 90 | 85, 86, 87, 89 | syl21anc 837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ (0...(𝑁 − 1))) |
| 91 | | eqcom 2740 |
. . . . . . . . . . 11
⊢ ((𝑙 + 1) = 𝑘 ↔ 𝑘 = (𝑙 + 1)) |
| 92 | | elfznn0 13527 |
. . . . . . . . . . . . . 14
⊢ (𝑙 ∈ (0...(𝑁 − 1)) → 𝑙 ∈ ℕ0) |
| 93 | 92 | nn0cnd 12455 |
. . . . . . . . . . . . 13
⊢ (𝑙 ∈ (0...(𝑁 − 1)) → 𝑙 ∈ ℂ) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑙 ∈ (0...(𝑁 − 1))) → 𝑙 ∈ ℂ) |
| 95 | | 1cnd 11118 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑙 ∈ (0...(𝑁 − 1))) → 1 ∈
ℂ) |
| 96 | 85 | zcnd 12588 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
| 97 | 96 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑙 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ) |
| 98 | 94, 95, 97 | addlsub 11544 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑙 ∈ (0...(𝑁 − 1))) → ((𝑙 + 1) = 𝑘 ↔ 𝑙 = (𝑘 − 1))) |
| 99 | 91, 98 | bitr3id 285 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (1...𝑁)) ∧ 𝑙 ∈ (0...(𝑁 − 1))) → (𝑘 = (𝑙 + 1) ↔ 𝑙 = (𝑘 − 1))) |
| 100 | 90, 99 | reu6dv 32473 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → ∃!𝑙 ∈ (0...(𝑁 − 1))𝑘 = (𝑙 + 1)) |
| 101 | 74, 1, 21, 76, 5, 53, 77, 60, 84, 100 | gsummptf1o 19883 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...𝑁) ↦ ((𝐷‘𝑘) · 𝐶))) = (𝑅 Σg (𝑙 ∈ (0...(𝑁 − 1)) ↦ ((𝐷‘(𝑙 + 1)) · 𝐶)))) |
| 102 | | fvoveq1 7378 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑘 → (𝐷‘(𝑙 + 1)) = (𝐷‘(𝑘 + 1))) |
| 103 | 102 | oveq1d 7370 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑘 → ((𝐷‘(𝑙 + 1)) · 𝐶) = ((𝐷‘(𝑘 + 1)) · 𝐶)) |
| 104 | 103 | cbvmptv 5199 |
. . . . . . . . . 10
⊢ (𝑙 ∈ (0...(𝑁 − 1)) ↦ ((𝐷‘(𝑙 + 1)) · 𝐶)) = (𝑘 ∈ (0...(𝑁 − 1)) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)) |
| 105 | 80 | mpteq1d 5185 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)) = (𝑘 ∈ (0...(𝑁 − 1)) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) |
| 106 | 104, 105 | eqtr4id 2787 |
. . . . . . . . 9
⊢ (𝜑 → (𝑙 ∈ (0...(𝑁 − 1)) ↦ ((𝐷‘(𝑙 + 1)) · 𝐶)) = (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) |
| 107 | 106 | oveq2d 7371 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 Σg (𝑙 ∈ (0...(𝑁 − 1)) ↦ ((𝐷‘(𝑙 + 1)) · 𝐶))) = (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)))) |
| 108 | 101, 107 | eqtrd 2768 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (1...𝑁) ↦ ((𝐷‘𝑘) · 𝐶))) = (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)))) |
| 109 | 108 | oveq1d 7370 |
. . . . . 6
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (1...𝑁) ↦ ((𝐷‘𝑘) · 𝐶))) + ((𝐷‘0) · 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) + ((𝐷‘0) · 𝐶))) |
| 110 | 52, 73, 109 | 3eqtrd 2772 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝐷‘𝑘) · 𝐶))) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) + ((𝐷‘0) · 𝐶))) |
| 111 | 46, 110 | eqtr3d 2770 |
. . . 4
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐶) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) + ((𝐷‘0) · 𝐶))) |
| 112 | 45, 111 | oveq12d 7373 |
. . 3
⊢ (𝜑 → (((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐴) − ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · 𝐶)) = (((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) + ((𝐷‘𝑁) · 𝐴)) − ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) + ((𝐷‘0) · 𝐶)))) |
| 113 | 4 | ringabld 20209 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Abel) |
| 114 | 35 | ralrimiva 3125 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝐷‘𝑘) · 𝐴) ∈ 𝐵) |
| 115 | 1, 5, 28, 114 | gsummptcl 19887 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) ∈ 𝐵) |
| 116 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐷:(0...𝑁)⟶𝐵) |
| 117 | | fz0add1fz1 13642 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (1...𝑁)) |
| 118 | 14, 117 | sylan 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (1...𝑁)) |
| 119 | 55, 118 | sselid 3928 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 120 | 116, 119 | ffvelcdmd 7027 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐷‘(𝑘 + 1)) ∈ 𝐵) |
| 121 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ 𝐵) |
| 122 | 1, 2, 29, 120, 121 | ringcld 20186 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐷‘(𝑘 + 1)) · 𝐶) ∈ 𝐵) |
| 123 | 122 | ralrimiva 3125 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝐷‘(𝑘 + 1)) · 𝐶) ∈ 𝐵) |
| 124 | 1, 5, 28, 123 | gsummptcl 19887 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) ∈ 𝐵) |
| 125 | 1, 26, 3 | ablsub4 19730 |
. . . 4
⊢ ((𝑅 ∈ Abel ∧ ((𝑅 Σg
(𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) ∈ 𝐵 ∧ ((𝐷‘𝑁) · 𝐴) ∈ 𝐵) ∧ ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) ∈ 𝐵 ∧ ((𝐷‘0) · 𝐶) ∈ 𝐵)) → (((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) + ((𝐷‘𝑁) · 𝐴)) − ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) + ((𝐷‘0) · 𝐶))) = (((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) − (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)))) + (((𝐷‘𝑁) · 𝐴) − ((𝐷‘0) · 𝐶)))) |
| 126 | 113, 115,
41, 124, 70, 125 | syl122anc 1381 |
. . 3
⊢ (𝜑 → (((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) + ((𝐷‘𝑁) · 𝐴)) − ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))) + ((𝐷‘0) · 𝐶))) = (((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) − (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)))) + (((𝐷‘𝑁) · 𝐴) − ((𝐷‘0) · 𝐶)))) |
| 127 | 13, 112, 126 | 3eqtrd 2772 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · (𝐴 − 𝐶)) = (((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) − (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)))) + (((𝐷‘𝑁) · 𝐴) − ((𝐷‘0) · 𝐶)))) |
| 128 | 7 | feqmptd 6899 |
. . . 4
⊢ (𝜑 → 𝐷 = (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) |
| 129 | 128 | oveq2d 7371 |
. . 3
⊢ (𝜑 → (𝑅 Σg 𝐷) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘)))) |
| 130 | 129 | oveq1d 7370 |
. 2
⊢ (𝜑 → ((𝑅 Σg 𝐷) · (𝐴 − 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ (𝐷‘𝑘))) · (𝐴 − 𝐶))) |
| 131 | | gsummulsubdishift1.f |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹 = (((𝐷‘𝑘) · 𝐴) − ((𝐷‘(𝑘 + 1)) · 𝐶))) |
| 132 | 131 | mpteq2dva 5188 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ 𝐹) = (𝑘 ∈ (0..^𝑁) ↦ (((𝐷‘𝑘) · 𝐴) − ((𝐷‘(𝑘 + 1)) · 𝐶)))) |
| 133 | 132 | oveq2d 7371 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) = (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ (((𝐷‘𝑘) · 𝐴) − ((𝐷‘(𝑘 + 1)) · 𝐶))))) |
| 134 | | eqid 2733 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴)) = (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴)) |
| 135 | | eqid 2733 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)) = (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)) |
| 136 | 1, 3, 113, 28, 35, 122, 134, 135 | gsummptfidmsub 19870 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ (((𝐷‘𝑘) · 𝐴) − ((𝐷‘(𝑘 + 1)) · 𝐶)))) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) − (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))))) |
| 137 | 133, 136 | eqtrd 2768 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) − (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶))))) |
| 138 | | gsummulsubdishift1.e |
. . 3
⊢ (𝜑 → 𝐸 = (((𝐷‘𝑁) · 𝐴) − ((𝐷‘0) · 𝐶))) |
| 139 | 137, 138 | oveq12d 7373 |
. 2
⊢ (𝜑 → ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸) = (((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘𝑘) · 𝐴))) − (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((𝐷‘(𝑘 + 1)) · 𝐶)))) + (((𝐷‘𝑁) · 𝐴) − ((𝐷‘0) · 𝐶)))) |
| 140 | 127, 130,
139 | 3eqtr4d 2778 |
1
⊢ (𝜑 → ((𝑅 Σg 𝐷) · (𝐴 − 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸)) |