Proof of Theorem gsummulsubdishift2
| Step | Hyp | Ref
| Expression |
| 1 | | gsummulsubdishift.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | gsummulsubdishift.t |
. . 3
⊢ · =
(.r‘𝑅) |
| 3 | | eqid 2733 |
. . 3
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 4 | | gsummulsubdishift.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | | eqid 2733 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 6 | 4 | ringcmnd 20210 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 7 | | ovexd 7390 |
. . . 4
⊢ (𝜑 → (0...𝑁) ∈ V) |
| 8 | | gsummulsubdishift.d |
. . . 4
⊢ (𝜑 → 𝐷:(0...𝑁)⟶𝐵) |
| 9 | | fzfid 13887 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 10 | | fvexd 6846 |
. . . . 5
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 11 | 8, 9, 10 | fdmfifsupp 9270 |
. . . 4
⊢ (𝜑 → 𝐷 finSupp (0g‘𝑅)) |
| 12 | 1, 5, 6, 7, 8, 11 | gsumcl 19835 |
. . 3
⊢ (𝜑 → (𝑅 Σg 𝐷) ∈ 𝐵) |
| 13 | | gsummulsubdishift.m |
. . . 4
⊢ − =
(-g‘𝑅) |
| 14 | 4 | ringgrpd 20168 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 15 | | gsummulsubdishift.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 16 | | gsummulsubdishift.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 17 | 1, 13, 14, 15, 16 | grpsubcld 33051 |
. . 3
⊢ (𝜑 → (𝐶 − 𝐴) ∈ 𝐵) |
| 18 | 1, 2, 3, 4, 12, 17 | ringmneg2 20231 |
. 2
⊢ (𝜑 → ((𝑅 Σg 𝐷) ·
((invg‘𝑅)‘(𝐶 − 𝐴))) = ((invg‘𝑅)‘((𝑅 Σg 𝐷) · (𝐶 − 𝐴)))) |
| 19 | 1, 13, 3 | grpinvsub 18943 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ 𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → ((invg‘𝑅)‘(𝐶 − 𝐴)) = (𝐴 − 𝐶)) |
| 20 | 14, 15, 16, 19 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
((invg‘𝑅)‘(𝐶 − 𝐴)) = (𝐴 − 𝐶)) |
| 21 | 20 | oveq2d 7371 |
. 2
⊢ (𝜑 → ((𝑅 Σg 𝐷) ·
((invg‘𝑅)‘(𝐶 − 𝐴))) = ((𝑅 Σg 𝐷) · (𝐴 − 𝐶))) |
| 22 | | gsummulsubdishift.p |
. . . . 5
⊢ + =
(+g‘𝑅) |
| 23 | | gsummulsubdishift.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 24 | | gsummulsubdishift2.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (((𝐷‘0) · 𝐴) − ((𝐷‘𝑁) · 𝐶))) |
| 25 | 24 | fveq2d 6835 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝑅)‘𝐸) = ((invg‘𝑅)‘(((𝐷‘0) · 𝐴) − ((𝐷‘𝑁) · 𝐶)))) |
| 26 | | 0elfz 13531 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 0 ∈ (0...𝑁)) |
| 27 | 23, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
| 28 | 8, 27 | ffvelcdmd 7027 |
. . . . . . . 8
⊢ (𝜑 → (𝐷‘0) ∈ 𝐵) |
| 29 | 1, 2, 4, 28, 16 | ringcld 20186 |
. . . . . . 7
⊢ (𝜑 → ((𝐷‘0) · 𝐴) ∈ 𝐵) |
| 30 | | nn0fz0 13532 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
↔ 𝑁 ∈ (0...𝑁)) |
| 31 | 23, 30 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
| 32 | 8, 31 | ffvelcdmd 7027 |
. . . . . . . 8
⊢ (𝜑 → (𝐷‘𝑁) ∈ 𝐵) |
| 33 | 1, 2, 4, 32, 15 | ringcld 20186 |
. . . . . . 7
⊢ (𝜑 → ((𝐷‘𝑁) · 𝐶) ∈ 𝐵) |
| 34 | 1, 13, 3 | grpinvsub 18943 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ ((𝐷‘0) · 𝐴) ∈ 𝐵 ∧ ((𝐷‘𝑁) · 𝐶) ∈ 𝐵) → ((invg‘𝑅)‘(((𝐷‘0) · 𝐴) − ((𝐷‘𝑁) · 𝐶))) = (((𝐷‘𝑁) · 𝐶) − ((𝐷‘0) · 𝐴))) |
| 35 | 14, 29, 33, 34 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝑅)‘(((𝐷‘0) · 𝐴) − ((𝐷‘𝑁) · 𝐶))) = (((𝐷‘𝑁) · 𝐶) − ((𝐷‘0) · 𝐴))) |
| 36 | 25, 35 | eqtrd 2768 |
. . . . 5
⊢ (𝜑 →
((invg‘𝑅)‘𝐸) = (((𝐷‘𝑁) · 𝐶) − ((𝐷‘0) · 𝐴))) |
| 37 | | gsummulsubdishift2.f |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹 = (((𝐷‘(𝑘 + 1)) · 𝐴) − ((𝐷‘𝑘) · 𝐶))) |
| 38 | 37 | fveq2d 6835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((invg‘𝑅)‘𝐹) = ((invg‘𝑅)‘(((𝐷‘(𝑘 + 1)) · 𝐴) − ((𝐷‘𝑘) · 𝐶)))) |
| 39 | 14 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑅 ∈ Grp) |
| 40 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑅 ∈ Ring) |
| 41 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐷:(0...𝑁)⟶𝐵) |
| 42 | | fzofzp1 13671 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁)) |
| 43 | 42 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 44 | 41, 43 | ffvelcdmd 7027 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐷‘(𝑘 + 1)) ∈ 𝐵) |
| 45 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐴 ∈ 𝐵) |
| 46 | 1, 2, 40, 44, 45 | ringcld 20186 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐷‘(𝑘 + 1)) · 𝐴) ∈ 𝐵) |
| 47 | | fzossfz 13585 |
. . . . . . . . . 10
⊢
(0..^𝑁) ⊆
(0...𝑁) |
| 48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0..^𝑁)) |
| 49 | 47, 48 | sselid 3928 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁)) |
| 50 | 41, 49 | ffvelcdmd 7027 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐷‘𝑘) ∈ 𝐵) |
| 51 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐶 ∈ 𝐵) |
| 52 | 1, 2, 40, 50, 51 | ringcld 20186 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐷‘𝑘) · 𝐶) ∈ 𝐵) |
| 53 | 1, 13, 3 | grpinvsub 18943 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧ ((𝐷‘(𝑘 + 1)) · 𝐴) ∈ 𝐵 ∧ ((𝐷‘𝑘) · 𝐶) ∈ 𝐵) → ((invg‘𝑅)‘(((𝐷‘(𝑘 + 1)) · 𝐴) − ((𝐷‘𝑘) · 𝐶))) = (((𝐷‘𝑘) · 𝐶) − ((𝐷‘(𝑘 + 1)) · 𝐴))) |
| 54 | 39, 46, 52, 53 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((invg‘𝑅)‘(((𝐷‘(𝑘 + 1)) · 𝐴) − ((𝐷‘𝑘) · 𝐶))) = (((𝐷‘𝑘) · 𝐶) − ((𝐷‘(𝑘 + 1)) · 𝐴))) |
| 55 | 38, 54 | eqtrd 2768 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((invg‘𝑅)‘𝐹) = (((𝐷‘𝑘) · 𝐶) − ((𝐷‘(𝑘 + 1)) · 𝐴))) |
| 56 | 1, 22, 13, 2, 4, 15, 16, 23, 8, 36, 55 | gsummulsubdishift1 33079 |
. . . 4
⊢ (𝜑 → ((𝑅 Σg 𝐷) · (𝐶 − 𝐴)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹))) +
((invg‘𝑅)‘𝐸))) |
| 57 | 56 | fveq2d 6835 |
. . 3
⊢ (𝜑 →
((invg‘𝑅)‘((𝑅 Σg 𝐷) · (𝐶 − 𝐴))) = ((invg‘𝑅)‘((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹))) +
((invg‘𝑅)‘𝐸)))) |
| 58 | 4 | ringabld 20209 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Abel) |
| 59 | | fzofi 13888 |
. . . . . 6
⊢
(0..^𝑁) ∈
Fin |
| 60 | 59 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0..^𝑁) ∈ Fin) |
| 61 | 1, 13, 39, 46, 52 | grpsubcld 33051 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (((𝐷‘(𝑘 + 1)) · 𝐴) − ((𝐷‘𝑘) · 𝐶)) ∈ 𝐵) |
| 62 | 37, 61 | eqeltrd 2833 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐹 ∈ 𝐵) |
| 63 | 1, 3, 39, 62 | grpinvcld 18909 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((invg‘𝑅)‘𝐹) ∈ 𝐵) |
| 64 | 63 | ralrimiva 3125 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((invg‘𝑅)‘𝐹) ∈ 𝐵) |
| 65 | 1, 6, 60, 64 | gsummptcl 19887 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹))) ∈ 𝐵) |
| 66 | 1, 13, 14, 29, 33 | grpsubcld 33051 |
. . . . . 6
⊢ (𝜑 → (((𝐷‘0) · 𝐴) − ((𝐷‘𝑁) · 𝐶)) ∈ 𝐵) |
| 67 | 24, 66 | eqeltrd 2833 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 68 | 1, 3, 14, 67 | grpinvcld 18909 |
. . . 4
⊢ (𝜑 →
((invg‘𝑅)‘𝐸) ∈ 𝐵) |
| 69 | 1, 22, 3 | ablinvadd 19727 |
. . . 4
⊢ ((𝑅 ∈ Abel ∧ (𝑅 Σg
(𝑘 ∈ (0..^𝑁) ↦
((invg‘𝑅)‘𝐹))) ∈ 𝐵 ∧ ((invg‘𝑅)‘𝐸) ∈ 𝐵) → ((invg‘𝑅)‘((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹))) +
((invg‘𝑅)‘𝐸))) = (((invg‘𝑅)‘(𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹)))) +
((invg‘𝑅)‘((invg‘𝑅)‘𝐸)))) |
| 70 | 58, 65, 68, 69 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
((invg‘𝑅)‘((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹))) +
((invg‘𝑅)‘𝐸))) = (((invg‘𝑅)‘(𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹)))) +
((invg‘𝑅)‘((invg‘𝑅)‘𝐸)))) |
| 71 | 63 | fmpttd 7057 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹)):(0..^𝑁)⟶𝐵) |
| 72 | 71, 60, 10 | fidmfisupp 9267 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹)) finSupp (0g‘𝑅)) |
| 73 | 1, 5, 3, 58, 60, 71, 72 | gsuminv 19866 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg
((invg‘𝑅)
∘ (𝑘 ∈
(0..^𝑁) ↦
((invg‘𝑅)‘𝐹)))) = ((invg‘𝑅)‘(𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹))))) |
| 74 | 1, 3 | grpinvf 18907 |
. . . . . . . . 9
⊢ (𝑅 ∈ Grp →
(invg‘𝑅):𝐵⟶𝐵) |
| 75 | 14, 74 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(invg‘𝑅):𝐵⟶𝐵) |
| 76 | 75, 63 | cofmpt 7074 |
. . . . . . 7
⊢ (𝜑 →
((invg‘𝑅)
∘ (𝑘 ∈
(0..^𝑁) ↦
((invg‘𝑅)‘𝐹))) = (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘((invg‘𝑅)‘𝐹)))) |
| 77 | 1, 3, 39, 62 | grpinvinvd 33050 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((invg‘𝑅)‘((invg‘𝑅)‘𝐹)) = 𝐹) |
| 78 | 77 | mpteq2dva 5188 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘((invg‘𝑅)‘𝐹))) = (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) |
| 79 | 76, 78 | eqtrd 2768 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝑅)
∘ (𝑘 ∈
(0..^𝑁) ↦
((invg‘𝑅)‘𝐹))) = (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) |
| 80 | 79 | oveq2d 7371 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg
((invg‘𝑅)
∘ (𝑘 ∈
(0..^𝑁) ↦
((invg‘𝑅)‘𝐹)))) = (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹))) |
| 81 | 73, 80 | eqtr3d 2770 |
. . . 4
⊢ (𝜑 →
((invg‘𝑅)‘(𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹)))) = (𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹))) |
| 82 | 1, 3, 14, 67 | grpinvinvd 33050 |
. . . 4
⊢ (𝜑 →
((invg‘𝑅)‘((invg‘𝑅)‘𝐸)) = 𝐸) |
| 83 | 81, 82 | oveq12d 7373 |
. . 3
⊢ (𝜑 →
(((invg‘𝑅)‘(𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ ((invg‘𝑅)‘𝐹)))) +
((invg‘𝑅)‘((invg‘𝑅)‘𝐸))) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸)) |
| 84 | 57, 70, 83 | 3eqtrd 2772 |
. 2
⊢ (𝜑 →
((invg‘𝑅)‘((𝑅 Σg 𝐷) · (𝐶 − 𝐴))) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸)) |
| 85 | 18, 21, 84 | 3eqtr3d 2776 |
1
⊢ (𝜑 → ((𝑅 Σg 𝐷) · (𝐴 − 𝐶)) = ((𝑅 Σg (𝑘 ∈ (0..^𝑁) ↦ 𝐹)) + 𝐸)) |