MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatsrng Structured version   Visualization version   GIF version

Theorem scmatsrng 22243
Description: The set of scalar matrices is a subring of the matrix ring/algebra. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐡 = (Baseβ€˜π΄)
scmatid.e 𝐸 = (Baseβ€˜π‘…)
scmatid.0 0 = (0gβ€˜π‘…)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatsrng ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝑆 ∈ (SubRingβ€˜π΄))

Proof of Theorem scmatsrng
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 scmatid.b . . 3 𝐡 = (Baseβ€˜π΄)
3 scmatid.e . . 3 𝐸 = (Baseβ€˜π‘…)
4 scmatid.0 . . 3 0 = (0gβ€˜π‘…)
5 scmatid.s . . 3 𝑆 = (𝑁 ScMat 𝑅)
61, 2, 3, 4, 5scmatsgrp 22242 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝑆 ∈ (SubGrpβ€˜π΄))
71, 2, 3, 4, 5scmatid 22237 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (1rβ€˜π΄) ∈ 𝑆)
81, 2, 3, 4, 5scmatmulcl 22241 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (π‘₯ ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯(.rβ€˜π΄)𝑦) ∈ 𝑆)
98ralrimivva 3199 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑆 (π‘₯(.rβ€˜π΄)𝑦) ∈ 𝑆)
101matring 22166 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝐴 ∈ Ring)
11 eqid 2731 . . . 4 (1rβ€˜π΄) = (1rβ€˜π΄)
12 eqid 2731 . . . 4 (.rβ€˜π΄) = (.rβ€˜π΄)
132, 11, 12issubrg2 20483 . . 3 (𝐴 ∈ Ring β†’ (𝑆 ∈ (SubRingβ€˜π΄) ↔ (𝑆 ∈ (SubGrpβ€˜π΄) ∧ (1rβ€˜π΄) ∈ 𝑆 ∧ βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑆 (π‘₯(.rβ€˜π΄)𝑦) ∈ 𝑆)))
1410, 13syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (𝑆 ∈ (SubRingβ€˜π΄) ↔ (𝑆 ∈ (SubGrpβ€˜π΄) ∧ (1rβ€˜π΄) ∈ 𝑆 ∧ βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑆 (π‘₯(.rβ€˜π΄)𝑦) ∈ 𝑆)))
156, 7, 9, 14mpbir3and 1341 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ 𝑆 ∈ (SubRingβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  β€˜cfv 6544  (class class class)co 7412  Fincfn 8942  Basecbs 17149  .rcmulr 17203  0gc0g 17390  SubGrpcsubg 19037  1rcur 20076  Ringcrg 20128  SubRingcsubrg 20458   Mat cmat 22128   ScMat cscmat 22212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-map 8825  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-sup 9440  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-fzo 13633  df-seq 13972  df-hash 14296  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-0g 17392  df-gsum 17393  df-prds 17398  df-pws 17400  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-submnd 18707  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18988  df-subg 19040  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-subrng 20435  df-subrg 20460  df-lmod 20617  df-lss 20688  df-sra 20931  df-rgmod 20932  df-dsmm 21507  df-frlm 21522  df-mamu 22107  df-mat 22129  df-dmat 22213  df-scmat 22214
This theorem is referenced by:  scmatcrng  22244  scmatstrbas  22249  scmatmhm  22257  scmatrhm  22258
  Copyright terms: Public domain W3C validator