Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmatsrng | Structured version Visualization version GIF version |
Description: The set of diagonal matrices is a subring of the matrix ring/algebra. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
dmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
dmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
dmatid.0 | ⊢ 0 = (0g‘𝑅) |
dmatid.d | ⊢ 𝐷 = (𝑁 DMat 𝑅) |
Ref | Expression |
---|---|
dmatsrng | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmatid.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | dmatid.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
3 | dmatid.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | dmatid.d | . . 3 ⊢ 𝐷 = (𝑁 DMat 𝑅) | |
5 | 1, 2, 3, 4 | dmatsgrp 21646 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴)) |
6 | 1, 2, 3, 4 | dmatid 21642 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝐷) |
7 | 6 | ancoms 459 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (1r‘𝐴) ∈ 𝐷) |
8 | 1, 2, 3, 4 | dmatmulcl 21647 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐴)𝑦) ∈ 𝐷) |
9 | 8 | ralrimivva 3111 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐴)𝑦) ∈ 𝐷) |
10 | 9 | ancoms 459 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐴)𝑦) ∈ 𝐷) |
11 | 1 | matring 21590 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
12 | 11 | ancoms 459 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐴 ∈ Ring) |
13 | eqid 2738 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
14 | eqid 2738 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
15 | 2, 13, 14 | issubrg2 20042 | . . 3 ⊢ (𝐴 ∈ Ring → (𝐷 ∈ (SubRing‘𝐴) ↔ (𝐷 ∈ (SubGrp‘𝐴) ∧ (1r‘𝐴) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐴)𝑦) ∈ 𝐷))) |
16 | 12, 15 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝐷 ∈ (SubRing‘𝐴) ↔ (𝐷 ∈ (SubGrp‘𝐴) ∧ (1r‘𝐴) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐴)𝑦) ∈ 𝐷))) |
17 | 5, 7, 10, 16 | mpbir3and 1341 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubRing‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6435 (class class class)co 7277 Fincfn 8731 Basecbs 16910 .rcmulr 16961 0gc0g 17148 SubGrpcsubg 18747 1rcur 19735 Ringcrg 19781 SubRingcsubrg 20018 Mat cmat 21552 DMat cdmat 21635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-ot 4572 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-isom 6444 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7976 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-er 8496 df-map 8615 df-ixp 8684 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-fsupp 9127 df-sup 9199 df-oi 9267 df-card 9695 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12436 df-uz 12581 df-fz 13238 df-fzo 13381 df-seq 13720 df-hash 14043 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-hom 16984 df-cco 16985 df-0g 17150 df-gsum 17151 df-prds 17156 df-pws 17158 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-grp 18578 df-minusg 18579 df-sbg 18580 df-mulg 18699 df-subg 18750 df-ghm 18830 df-cntz 18921 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-subrg 20020 df-lmod 20123 df-lss 20192 df-sra 20432 df-rgmod 20433 df-dsmm 20937 df-frlm 20952 df-mamu 21531 df-mat 21553 df-dmat 21637 |
This theorem is referenced by: dmatcrng 21649 scmatsgrp1 21669 scmatsrng1 21670 |
Copyright terms: Public domain | W3C validator |