| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lamberte | Structured version Visualization version GIF version | ||
| Description: A value of Lambert W (product logarithm) function at e. (Contributed by Ender Ting, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| lamberte.1 | ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) |
| Ref | Expression |
|---|---|
| lamberte | ⊢ e𝑅1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11146 | . . . . . 6 ⊢ 1 ∈ V | |
| 2 | epr 16152 | . . . . . . 7 ⊢ e ∈ ℝ+ | |
| 3 | 2 | elexi 3467 | . . . . . 6 ⊢ e ∈ V |
| 4 | eqcom 2736 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 ↔ 1 = 𝑥) | |
| 5 | 4 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑥 = 1 → 1 = 𝑥) |
| 6 | ax-1cn 11102 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 7 | 5, 6 | eqeltrrdi 2837 | . . . . . . . . 9 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑥 ∈ ℂ) |
| 9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑦 = e) | |
| 10 | df-e 16010 | . . . . . . . . . . . . . 14 ⊢ e = (exp‘1) | |
| 11 | rpssre 12935 | . . . . . . . . . . . . . . . 16 ⊢ ℝ+ ⊆ ℝ | |
| 12 | ax-resscn 11101 | . . . . . . . . . . . . . . . 16 ⊢ ℝ ⊆ ℂ | |
| 13 | 11, 12 | sstri 3953 | . . . . . . . . . . . . . . 15 ⊢ ℝ+ ⊆ ℂ |
| 14 | 13, 2 | sselii 3940 | . . . . . . . . . . . . . 14 ⊢ e ∈ ℂ |
| 15 | 10, 14 | eqeltrri 2825 | . . . . . . . . . . . . 13 ⊢ (exp‘1) ∈ ℂ |
| 16 | 15 | mullidi 11155 | . . . . . . . . . . . 12 ⊢ (1 · (exp‘1)) = (exp‘1) |
| 17 | 16, 10 | eqtr4i 2755 | . . . . . . . . . . 11 ⊢ (1 · (exp‘1)) = e |
| 18 | 5 | fveq2d 6844 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → (exp‘1) = (exp‘𝑥)) |
| 19 | 5, 18 | oveq12d 7387 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (1 · (exp‘1)) = (𝑥 · (exp‘𝑥))) |
| 20 | 17, 19 | eqtr3id 2778 | . . . . . . . . . 10 ⊢ (𝑥 = 1 → e = (𝑥 · (exp‘𝑥))) |
| 21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → e = (𝑥 · (exp‘𝑥))) |
| 22 | 9, 21 | eqtrd 2764 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑦 = (𝑥 · (exp‘𝑥))) |
| 23 | 8, 22 | jca 511 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))) |
| 24 | tbtru 1548 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) | |
| 25 | 23, 24 | sylib 218 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) |
| 26 | eqid 2729 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 27 | 1, 3, 25, 26 | braba 5492 | . . . . 5 ⊢ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ ⊤) |
| 28 | tbtru 1548 | . . . . 5 ⊢ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ ⊤)) | |
| 29 | 27, 28 | mpbir 231 | . . . 4 ⊢ 1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e |
| 30 | df-mpt 5184 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 31 | 30 | breqi 5108 | . . . 4 ⊢ (1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e ↔ 1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e) |
| 32 | 29, 31 | mpbir 231 | . . 3 ⊢ 1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e |
| 33 | 3, 1 | brcnv 5836 | . . 3 ⊢ (e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1 ↔ 1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e) |
| 34 | 32, 33 | mpbir 231 | . 2 ⊢ e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1 |
| 35 | lamberte.1 | . . 3 ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) | |
| 36 | 35 | breqi 5108 | . 2 ⊢ (e𝑅1 ↔ e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1) |
| 37 | 34, 36 | mpbir 231 | 1 ⊢ e𝑅1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 ◡ccnv 5630 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 1c1 11045 · cmul 11049 ℝ+crp 12927 expce 16003 eceu 16004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-e 16010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |