| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lamberte | Structured version Visualization version GIF version | ||
| Description: A value of Lambert W (product logarithm) function at e. (Contributed by Ender Ting, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| lamberte.1 | ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) |
| Ref | Expression |
|---|---|
| lamberte | ⊢ e𝑅1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11176 | . . . . . 6 ⊢ 1 ∈ V | |
| 2 | epr 16182 | . . . . . . 7 ⊢ e ∈ ℝ+ | |
| 3 | 2 | elexi 3473 | . . . . . 6 ⊢ e ∈ V |
| 4 | eqcom 2737 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 ↔ 1 = 𝑥) | |
| 5 | 4 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑥 = 1 → 1 = 𝑥) |
| 6 | ax-1cn 11132 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 7 | 5, 6 | eqeltrrdi 2838 | . . . . . . . . 9 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑥 ∈ ℂ) |
| 9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑦 = e) | |
| 10 | df-e 16040 | . . . . . . . . . . . . . 14 ⊢ e = (exp‘1) | |
| 11 | rpssre 12965 | . . . . . . . . . . . . . . . 16 ⊢ ℝ+ ⊆ ℝ | |
| 12 | ax-resscn 11131 | . . . . . . . . . . . . . . . 16 ⊢ ℝ ⊆ ℂ | |
| 13 | 11, 12 | sstri 3958 | . . . . . . . . . . . . . . 15 ⊢ ℝ+ ⊆ ℂ |
| 14 | 13, 2 | sselii 3945 | . . . . . . . . . . . . . 14 ⊢ e ∈ ℂ |
| 15 | 10, 14 | eqeltrri 2826 | . . . . . . . . . . . . 13 ⊢ (exp‘1) ∈ ℂ |
| 16 | 15 | mullidi 11185 | . . . . . . . . . . . 12 ⊢ (1 · (exp‘1)) = (exp‘1) |
| 17 | 16, 10 | eqtr4i 2756 | . . . . . . . . . . 11 ⊢ (1 · (exp‘1)) = e |
| 18 | 5 | fveq2d 6864 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → (exp‘1) = (exp‘𝑥)) |
| 19 | 5, 18 | oveq12d 7407 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (1 · (exp‘1)) = (𝑥 · (exp‘𝑥))) |
| 20 | 17, 19 | eqtr3id 2779 | . . . . . . . . . 10 ⊢ (𝑥 = 1 → e = (𝑥 · (exp‘𝑥))) |
| 21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → e = (𝑥 · (exp‘𝑥))) |
| 22 | 9, 21 | eqtrd 2765 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑦 = (𝑥 · (exp‘𝑥))) |
| 23 | 8, 22 | jca 511 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))) |
| 24 | tbtru 1548 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) | |
| 25 | 23, 24 | sylib 218 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) |
| 26 | eqid 2730 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 27 | 1, 3, 25, 26 | braba 5499 | . . . . 5 ⊢ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ ⊤) |
| 28 | tbtru 1548 | . . . . 5 ⊢ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ ⊤)) | |
| 29 | 27, 28 | mpbir 231 | . . . 4 ⊢ 1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e |
| 30 | df-mpt 5191 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 31 | 30 | breqi 5115 | . . . 4 ⊢ (1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e ↔ 1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e) |
| 32 | 29, 31 | mpbir 231 | . . 3 ⊢ 1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e |
| 33 | 3, 1 | brcnv 5848 | . . 3 ⊢ (e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1 ↔ 1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e) |
| 34 | 32, 33 | mpbir 231 | . 2 ⊢ e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1 |
| 35 | lamberte.1 | . . 3 ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) | |
| 36 | 35 | breqi 5115 | . 2 ⊢ (e𝑅1 ↔ e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1) |
| 37 | 34, 36 | mpbir 231 | 1 ⊢ e𝑅1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 class class class wbr 5109 {copab 5171 ↦ cmpt 5190 ◡ccnv 5639 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 1c1 11075 · cmul 11079 ℝ+crp 12957 expce 16033 eceu 16034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-ico 13318 df-fz 13475 df-fzo 13622 df-fl 13760 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-ef 16039 df-e 16040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |