| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lamberte | Structured version Visualization version GIF version | ||
| Description: A value of Lambert W (product logarithm) function at e. (Contributed by Ender Ting, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| lamberte.1 | ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) |
| Ref | Expression |
|---|---|
| lamberte | ⊢ e𝑅1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 11108 | . . . . . 6 ⊢ 1 ∈ V | |
| 2 | epr 16117 | . . . . . . 7 ⊢ e ∈ ℝ+ | |
| 3 | 2 | elexi 3459 | . . . . . 6 ⊢ e ∈ V |
| 4 | eqcom 2738 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 ↔ 1 = 𝑥) | |
| 5 | 4 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑥 = 1 → 1 = 𝑥) |
| 6 | ax-1cn 11064 | . . . . . . . . . 10 ⊢ 1 ∈ ℂ | |
| 7 | 5, 6 | eqeltrrdi 2840 | . . . . . . . . 9 ⊢ (𝑥 = 1 → 𝑥 ∈ ℂ) |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑥 ∈ ℂ) |
| 9 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑦 = e) | |
| 10 | df-e 15975 | . . . . . . . . . . . . . 14 ⊢ e = (exp‘1) | |
| 11 | rpssre 12898 | . . . . . . . . . . . . . . . 16 ⊢ ℝ+ ⊆ ℝ | |
| 12 | ax-resscn 11063 | . . . . . . . . . . . . . . . 16 ⊢ ℝ ⊆ ℂ | |
| 13 | 11, 12 | sstri 3939 | . . . . . . . . . . . . . . 15 ⊢ ℝ+ ⊆ ℂ |
| 14 | 13, 2 | sselii 3926 | . . . . . . . . . . . . . 14 ⊢ e ∈ ℂ |
| 15 | 10, 14 | eqeltrri 2828 | . . . . . . . . . . . . 13 ⊢ (exp‘1) ∈ ℂ |
| 16 | 15 | mullidi 11117 | . . . . . . . . . . . 12 ⊢ (1 · (exp‘1)) = (exp‘1) |
| 17 | 16, 10 | eqtr4i 2757 | . . . . . . . . . . 11 ⊢ (1 · (exp‘1)) = e |
| 18 | 5 | fveq2d 6826 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → (exp‘1) = (exp‘𝑥)) |
| 19 | 5, 18 | oveq12d 7364 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (1 · (exp‘1)) = (𝑥 · (exp‘𝑥))) |
| 20 | 17, 19 | eqtr3id 2780 | . . . . . . . . . 10 ⊢ (𝑥 = 1 → e = (𝑥 · (exp‘𝑥))) |
| 21 | 20 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → e = (𝑥 · (exp‘𝑥))) |
| 22 | 9, 21 | eqtrd 2766 | . . . . . . . 8 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → 𝑦 = (𝑥 · (exp‘𝑥))) |
| 23 | 8, 22 | jca 511 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))) |
| 24 | tbtru 1549 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) | |
| 25 | 23, 24 | sylib 218 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = e) → ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) |
| 26 | eqid 2731 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 27 | 1, 3, 25, 26 | braba 5475 | . . . . 5 ⊢ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ ⊤) |
| 28 | tbtru 1549 | . . . . 5 ⊢ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ (1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e ↔ ⊤)) | |
| 29 | 27, 28 | mpbir 231 | . . . 4 ⊢ 1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e |
| 30 | df-mpt 5171 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 31 | 30 | breqi 5095 | . . . 4 ⊢ (1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e ↔ 1{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}e) |
| 32 | 29, 31 | mpbir 231 | . . 3 ⊢ 1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e |
| 33 | 3, 1 | brcnv 5821 | . . 3 ⊢ (e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1 ↔ 1(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))e) |
| 34 | 32, 33 | mpbir 231 | . 2 ⊢ e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1 |
| 35 | lamberte.1 | . . 3 ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) | |
| 36 | 35 | breqi 5095 | . 2 ⊢ (e𝑅1 ↔ e◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))1) |
| 37 | 34, 36 | mpbir 231 | 1 ⊢ e𝑅1 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 class class class wbr 5089 {copab 5151 ↦ cmpt 5170 ◡ccnv 5613 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 1c1 11007 · cmul 11011 ℝ+crp 12890 expce 15968 eceu 15969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-e 15975 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |