Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgprismgr4cycllem8 Structured version   Visualization version   GIF version

Theorem gpgprismgr4cycllem8 48085
Description: Lemma 8 for gpgprismgr4cycl0 48089. (Contributed by AV, 2-Nov-2025.)
Hypotheses
Ref Expression
gpgprismgr4cycl.p 𝑃 = ⟨“⟨0, 0⟩⟨0, 1⟩⟨1, 1⟩⟨1, 0⟩⟨0, 0⟩”⟩
gpgprismgr4cycl.f 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
gpgprismgr4cycl.g 𝐺 = (𝑁 gPetersenGr 1)
Assertion
Ref Expression
gpgprismgr4cycllem8 (𝑁 ∈ (ℤ‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺))

Proof of Theorem gpgprismgr4cycllem8
StepHypRef Expression
1 gpgprismgr4cycl.f . . 3 𝐹 = ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩
2 df-s4 14792 . . 3 ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩} {⟨1, 0⟩, ⟨0, 0⟩}”⟩ = (⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩}”⟩ ++ ⟨“{⟨1, 0⟩, ⟨0, 0⟩}”⟩)
31, 2eqtri 2752 . 2 𝐹 = (⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩}”⟩ ++ ⟨“{⟨1, 0⟩, ⟨0, 0⟩}”⟩)
4 gpgprismgriedgdmss 48036 . . . 4 (𝑁 ∈ (ℤ‘3) → ({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))
5 unss 4149 . . . . 5 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) ↔ ({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))
6 prex 5387 . . . . . . . 8 {⟨0, 0⟩, ⟨0, 1⟩} ∈ V
7 prex 5387 . . . . . . . 8 {⟨0, 0⟩, ⟨1, 0⟩} ∈ V
86, 7prss 4780 . . . . . . 7 (({⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {⟨0, 0⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1))) ↔ {{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))
9 gpgprismgr4cycl.g . . . . . . . . . . . . 13 𝐺 = (𝑁 gPetersenGr 1)
109eqcomi 2738 . . . . . . . . . . . 12 (𝑁 gPetersenGr 1) = 𝐺
1110fveq2i 6843 . . . . . . . . . . 11 (iEdg‘(𝑁 gPetersenGr 1)) = (iEdg‘𝐺)
1211dmeqi 5858 . . . . . . . . . 10 dom (iEdg‘(𝑁 gPetersenGr 1)) = dom (iEdg‘𝐺)
1312eleq2i 2820 . . . . . . . . 9 ({⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ↔ {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘𝐺))
1413biimpi 216 . . . . . . . 8 ({⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘𝐺))
1514adantr 480 . . . . . . 7 (({⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {⟨0, 0⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘𝐺))
168, 15sylbir 235 . . . . . 6 ({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘𝐺))
1716adantr 480 . . . . 5 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘𝐺))
185, 17sylbir 235 . . . 4 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘𝐺))
194, 18syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → {⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘𝐺))
20 prex 5387 . . . . . . . 8 {⟨1, 1⟩, ⟨0, 1⟩} ∈ V
21 prex 5387 . . . . . . . 8 {⟨1, 1⟩, ⟨1, 0⟩} ∈ V
2220, 21prss 4780 . . . . . . 7 (({⟨1, 1⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1))) ↔ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)))
23 prcom 4692 . . . . . . . . . 10 {⟨1, 1⟩, ⟨0, 1⟩} = {⟨0, 1⟩, ⟨1, 1⟩}
2423, 12eleq12i 2821 . . . . . . . . 9 ({⟨1, 1⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ↔ {⟨0, 1⟩, ⟨1, 1⟩} ∈ dom (iEdg‘𝐺))
2524biimpi 216 . . . . . . . 8 ({⟨1, 1⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨0, 1⟩, ⟨1, 1⟩} ∈ dom (iEdg‘𝐺))
2625adantr 480 . . . . . . 7 (({⟨1, 1⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨0, 1⟩, ⟨1, 1⟩} ∈ dom (iEdg‘𝐺))
2722, 26sylbir 235 . . . . . 6 ({{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨0, 1⟩, ⟨1, 1⟩} ∈ dom (iEdg‘𝐺))
2827adantl 481 . . . . 5 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨0, 1⟩, ⟨1, 1⟩} ∈ dom (iEdg‘𝐺))
295, 28sylbir 235 . . . 4 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨0, 1⟩, ⟨1, 1⟩} ∈ dom (iEdg‘𝐺))
304, 29syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → {⟨0, 1⟩, ⟨1, 1⟩} ∈ dom (iEdg‘𝐺))
3112eleq2i 2820 . . . . . . . . 9 ({⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ↔ {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘𝐺))
3231biimpi 216 . . . . . . . 8 ({⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘𝐺))
3332adantl 481 . . . . . . 7 (({⟨1, 1⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘𝐺))
3422, 33sylbir 235 . . . . . 6 ({{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘𝐺))
3534adantl 481 . . . . 5 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘𝐺))
365, 35sylbir 235 . . . 4 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘𝐺))
374, 36syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → {⟨1, 1⟩, ⟨1, 0⟩} ∈ dom (iEdg‘𝐺))
3819, 30, 37s3cld 14814 . 2 (𝑁 ∈ (ℤ‘3) → ⟨“{⟨0, 0⟩, ⟨0, 1⟩} {⟨0, 1⟩, ⟨1, 1⟩} {⟨1, 1⟩, ⟨1, 0⟩}”⟩ ∈ Word dom (iEdg‘𝐺))
39 simpr 484 . . . . . . 7 (({⟨0, 0⟩, ⟨0, 1⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {⟨0, 0⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨0, 0⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)))
408, 39sylbir 235 . . . . . 6 ({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨0, 0⟩, ⟨1, 0⟩} ∈ dom (iEdg‘(𝑁 gPetersenGr 1)))
41 prcom 4692 . . . . . 6 {⟨1, 0⟩, ⟨0, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
429fveq2i 6843 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘(𝑁 gPetersenGr 1))
4342dmeqi 5858 . . . . . 6 dom (iEdg‘𝐺) = dom (iEdg‘(𝑁 gPetersenGr 1))
4440, 41, 433eltr4g 2845 . . . . 5 ({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨1, 0⟩, ⟨0, 0⟩} ∈ dom (iEdg‘𝐺))
4544adantr 480 . . . 4 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) ∧ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}} ⊆ dom (iEdg‘(𝑁 gPetersenGr 1))) → {⟨1, 0⟩, ⟨0, 0⟩} ∈ dom (iEdg‘𝐺))
465, 45sylbir 235 . . 3 (({{⟨0, 0⟩, ⟨0, 1⟩}, {⟨0, 0⟩, ⟨1, 0⟩}} ∪ {{⟨1, 1⟩, ⟨0, 1⟩}, {⟨1, 1⟩, ⟨1, 0⟩}}) ⊆ dom (iEdg‘(𝑁 gPetersenGr 1)) → {⟨1, 0⟩, ⟨0, 0⟩} ∈ dom (iEdg‘𝐺))
474, 46syl 17 . 2 (𝑁 ∈ (ℤ‘3) → {⟨1, 0⟩, ⟨0, 0⟩} ∈ dom (iEdg‘𝐺))
483, 38, 47cats1cld 14797 1 (𝑁 ∈ (ℤ‘3) → 𝐹 ∈ Word dom (iEdg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3909  wss 3911  {cpr 4587  cop 4591  dom cdm 5631  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  3c3 12218  cuz 12769  Word cword 14454   ++ cconcat 14511  ⟨“cs1 14536  ⟨“cs3 14784  ⟨“cs4 14785  ⟨“cs5 14786  iEdgciedg 28977   gPetersenGr cgpg 48024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-mod 13808  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-s4 14792  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28969  df-iedg 28979  df-gpg 48025
This theorem is referenced by:  gpgprismgr4cycllem11  48088
  Copyright terms: Public domain W3C validator