![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochexmidlem4 | Structured version Visualization version GIF version |
Description: Lemma for dochexmid 41429. (Contributed by NM, 15-Jan-2015.) |
Ref | Expression |
---|---|
dochexmidlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochexmidlem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochexmidlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochexmidlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
dochexmidlem1.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dochexmidlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dochexmidlem1.p | ⊢ ⊕ = (LSSum‘𝑈) |
dochexmidlem1.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
dochexmidlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochexmidlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
dochexmidlem4.pp | ⊢ (𝜑 → 𝑝 ∈ 𝐴) |
dochexmidlem4.qq | ⊢ (𝜑 → 𝑞 ∈ 𝐴) |
dochexmidlem4.z | ⊢ 0 = (0g‘𝑈) |
dochexmidlem4.m | ⊢ 𝑀 = (𝑋 ⊕ 𝑝) |
dochexmidlem4.xn | ⊢ (𝜑 → 𝑋 ≠ { 0 }) |
dochexmidlem4.pl | ⊢ (𝜑 → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) |
Ref | Expression |
---|---|
dochexmidlem4 | ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochexmidlem4.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
2 | dochexmidlem1.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
3 | dochexmidlem1.p | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
4 | dochexmidlem1.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
5 | dochexmidlem1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dochexmidlem1.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochexmidlem1.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 5, 6, 7 | dvhlmod 41071 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
9 | dochexmidlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
10 | dochexmidlem4.pp | . . . 4 ⊢ (𝜑 → 𝑝 ∈ 𝐴) | |
11 | 2, 4, 8, 10 | lsatlssel 38957 | . . 3 ⊢ (𝜑 → 𝑝 ∈ 𝑆) |
12 | dochexmidlem4.qq | . . 3 ⊢ (𝜑 → 𝑞 ∈ 𝐴) | |
13 | dochexmidlem4.xn | . . 3 ⊢ (𝜑 → 𝑋 ≠ { 0 }) | |
14 | dochexmidlem4.pl | . . . . 5 ⊢ (𝜑 → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) | |
15 | inss2 4259 | . . . . 5 ⊢ (( ⊥ ‘𝑋) ∩ 𝑀) ⊆ 𝑀 | |
16 | 14, 15 | sstrdi 4021 | . . . 4 ⊢ (𝜑 → 𝑞 ⊆ 𝑀) |
17 | dochexmidlem4.m | . . . 4 ⊢ 𝑀 = (𝑋 ⊕ 𝑝) | |
18 | 16, 17 | sseqtrdi 4059 | . . 3 ⊢ (𝜑 → 𝑞 ⊆ (𝑋 ⊕ 𝑝)) |
19 | 1, 2, 3, 4, 8, 9, 11, 12, 13, 18 | lsmsat 38968 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝐴 (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) |
20 | dochexmidlem1.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
21 | dochexmidlem1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
22 | dochexmidlem1.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
23 | 7 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
24 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑋 ∈ 𝑆) |
25 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑝 ∈ 𝐴) |
26 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑞 ∈ 𝐴) |
27 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑟 ∈ 𝐴) | |
28 | inss1 4258 | . . . . . 6 ⊢ (( ⊥ ‘𝑋) ∩ 𝑀) ⊆ ( ⊥ ‘𝑋) | |
29 | 14, 28 | sstrdi 4021 | . . . . 5 ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) |
30 | 29 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑞 ⊆ ( ⊥ ‘𝑋)) |
31 | simp3l 1201 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑟 ⊆ 𝑋) | |
32 | simp3r 1202 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑞 ⊆ (𝑟 ⊕ 𝑝)) | |
33 | 5, 20, 6, 21, 2, 22, 3, 4, 23, 24, 25, 26, 27, 30, 31, 32 | dochexmidlem3 41423 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
34 | 33 | rexlimdv3a 3161 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝐴 (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝)) → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) |
35 | 19, 34 | mpd 15 | 1 ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∃wrex 3072 ∩ cin 3975 ⊆ wss 3976 {csn 4654 ‘cfv 6579 (class class class)co 7454 Basecbs 17264 0gc0g 17505 LSSumclsm 19682 LSubSpclss 20958 LSpanclspn 20998 LSAtomsclsa 38934 HLchlt 39310 LHypclh 39945 DVecHcdvh 41039 ocHcoch 41308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5313 ax-sep 5327 ax-nul 5334 ax-pow 5393 ax-pr 5457 ax-un 7775 ax-cnex 11245 ax-resscn 11246 ax-1cn 11247 ax-icn 11248 ax-addcl 11249 ax-addrcl 11250 ax-mulcl 11251 ax-mulrcl 11252 ax-mulcom 11253 ax-addass 11254 ax-mulass 11255 ax-distr 11256 ax-i2m1 11257 ax-1ne0 11258 ax-1rid 11259 ax-rnegex 11260 ax-rrecex 11261 ax-cnre 11262 ax-pre-lttri 11263 ax-pre-lttrn 11264 ax-pre-ltadd 11265 ax-pre-mulgt0 11266 ax-riotaBAD 38913 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3384 df-reu 3385 df-rab 3440 df-v 3486 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4354 df-if 4555 df-pw 4630 df-sn 4655 df-pr 4657 df-tp 4659 df-op 4661 df-uni 4938 df-int 4979 df-iun 5027 df-iin 5028 df-br 5177 df-opab 5239 df-mpt 5260 df-tr 5294 df-id 5604 df-eprel 5610 df-po 5618 df-so 5619 df-fr 5661 df-we 5663 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-rn 5717 df-res 5718 df-ima 5719 df-pred 6338 df-ord 6404 df-on 6405 df-lim 6406 df-suc 6407 df-iota 6531 df-fun 6581 df-fn 6582 df-f 6583 df-f1 6584 df-fo 6585 df-f1o 6586 df-fv 6587 df-riota 7410 df-ov 7457 df-oprab 7458 df-mpo 7459 df-om 7909 df-1st 8035 df-2nd 8036 df-tpos 8272 df-undef 8319 df-frecs 8327 df-wrecs 8358 df-recs 8432 df-rdg 8471 df-1o 8527 df-2o 8528 df-er 8768 df-map 8891 df-en 9009 df-dom 9010 df-sdom 9011 df-fin 9012 df-pnf 11331 df-mnf 11332 df-xr 11333 df-ltxr 11334 df-le 11335 df-sub 11527 df-neg 11528 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-n0 12559 df-z 12645 df-uz 12909 df-fz 13573 df-struct 17200 df-sets 17217 df-slot 17235 df-ndx 17247 df-base 17265 df-ress 17294 df-plusg 17330 df-mulr 17331 df-sca 17333 df-vsca 17334 df-0g 17507 df-mre 17650 df-mrc 17651 df-acs 17653 df-proset 18371 df-poset 18389 df-plt 18406 df-lub 18422 df-glb 18423 df-join 18424 df-meet 18425 df-p0 18501 df-p1 18502 df-lat 18508 df-clat 18575 df-mgm 18684 df-sgrp 18763 df-mnd 18779 df-submnd 18825 df-grp 18982 df-minusg 18983 df-sbg 18984 df-subg 19169 df-cntz 19363 df-oppg 19392 df-lsm 19684 df-cmn 19830 df-abl 19831 df-mgp 20168 df-rng 20186 df-ur 20215 df-ring 20268 df-oppr 20366 df-dvdsr 20389 df-unit 20390 df-invr 20420 df-dvr 20433 df-drng 20759 df-lmod 20888 df-lss 20959 df-lsp 20999 df-lvec 21131 df-lsatoms 38936 df-lcv 38979 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 df-lines 39462 df-psubsp 39464 df-pmap 39465 df-padd 39757 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 df-tendo 40716 df-edring 40718 df-disoa 40990 df-dvech 41040 df-dib 41100 df-dic 41134 df-dih 41190 df-doch 41309 |
This theorem is referenced by: dochexmidlem5 41425 |
Copyright terms: Public domain | W3C validator |