| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochexmidlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for dochexmid 41457. (Contributed by NM, 15-Jan-2015.) |
| Ref | Expression |
|---|---|
| dochexmidlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochexmidlem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochexmidlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochexmidlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| dochexmidlem1.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| dochexmidlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| dochexmidlem1.p | ⊢ ⊕ = (LSSum‘𝑈) |
| dochexmidlem1.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| dochexmidlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochexmidlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| dochexmidlem4.pp | ⊢ (𝜑 → 𝑝 ∈ 𝐴) |
| dochexmidlem4.qq | ⊢ (𝜑 → 𝑞 ∈ 𝐴) |
| dochexmidlem4.z | ⊢ 0 = (0g‘𝑈) |
| dochexmidlem4.m | ⊢ 𝑀 = (𝑋 ⊕ 𝑝) |
| dochexmidlem4.xn | ⊢ (𝜑 → 𝑋 ≠ { 0 }) |
| dochexmidlem4.pl | ⊢ (𝜑 → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) |
| Ref | Expression |
|---|---|
| dochexmidlem4 | ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochexmidlem4.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 2 | dochexmidlem1.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 3 | dochexmidlem1.p | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
| 4 | dochexmidlem1.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 5 | dochexmidlem1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | dochexmidlem1.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | dochexmidlem1.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | 5, 6, 7 | dvhlmod 41099 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 9 | dochexmidlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 10 | dochexmidlem4.pp | . . . 4 ⊢ (𝜑 → 𝑝 ∈ 𝐴) | |
| 11 | 2, 4, 8, 10 | lsatlssel 38985 | . . 3 ⊢ (𝜑 → 𝑝 ∈ 𝑆) |
| 12 | dochexmidlem4.qq | . . 3 ⊢ (𝜑 → 𝑞 ∈ 𝐴) | |
| 13 | dochexmidlem4.xn | . . 3 ⊢ (𝜑 → 𝑋 ≠ { 0 }) | |
| 14 | dochexmidlem4.pl | . . . . 5 ⊢ (𝜑 → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) | |
| 15 | inss2 4203 | . . . . 5 ⊢ (( ⊥ ‘𝑋) ∩ 𝑀) ⊆ 𝑀 | |
| 16 | 14, 15 | sstrdi 3961 | . . . 4 ⊢ (𝜑 → 𝑞 ⊆ 𝑀) |
| 17 | dochexmidlem4.m | . . . 4 ⊢ 𝑀 = (𝑋 ⊕ 𝑝) | |
| 18 | 16, 17 | sseqtrdi 3989 | . . 3 ⊢ (𝜑 → 𝑞 ⊆ (𝑋 ⊕ 𝑝)) |
| 19 | 1, 2, 3, 4, 8, 9, 11, 12, 13, 18 | lsmsat 38996 | . 2 ⊢ (𝜑 → ∃𝑟 ∈ 𝐴 (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) |
| 20 | dochexmidlem1.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 21 | dochexmidlem1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 22 | dochexmidlem1.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 23 | 7 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 24 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑋 ∈ 𝑆) |
| 25 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑝 ∈ 𝐴) |
| 26 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑞 ∈ 𝐴) |
| 27 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑟 ∈ 𝐴) | |
| 28 | inss1 4202 | . . . . . 6 ⊢ (( ⊥ ‘𝑋) ∩ 𝑀) ⊆ ( ⊥ ‘𝑋) | |
| 29 | 14, 28 | sstrdi 3961 | . . . . 5 ⊢ (𝜑 → 𝑞 ⊆ ( ⊥ ‘𝑋)) |
| 30 | 29 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑞 ⊆ ( ⊥ ‘𝑋)) |
| 31 | simp3l 1202 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑟 ⊆ 𝑋) | |
| 32 | simp3r 1203 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑞 ⊆ (𝑟 ⊕ 𝑝)) | |
| 33 | 5, 20, 6, 21, 2, 22, 3, 4, 23, 24, 25, 26, 27, 30, 31, 32 | dochexmidlem3 41451 | . . 3 ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴 ∧ (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝))) → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
| 34 | 33 | rexlimdv3a 3139 | . 2 ⊢ (𝜑 → (∃𝑟 ∈ 𝐴 (𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ (𝑟 ⊕ 𝑝)) → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) |
| 35 | 19, 34 | mpd 15 | 1 ⊢ (𝜑 → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ∩ cin 3915 ⊆ wss 3916 {csn 4591 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 0gc0g 17408 LSSumclsm 19570 LSubSpclss 20843 LSpanclspn 20883 LSAtomsclsa 38962 HLchlt 39338 LHypclh 39973 DVecHcdvh 41067 ocHcoch 41336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-0g 17410 df-mre 17553 df-mrc 17554 df-acs 17556 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cntz 19255 df-oppg 19284 df-lsm 19572 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lvec 21016 df-lsatoms 38964 df-lcv 39007 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tendo 40744 df-edring 40746 df-disoa 41018 df-dvech 41068 df-dib 41128 df-dic 41162 df-dih 41218 df-doch 41337 |
| This theorem is referenced by: dochexmidlem5 41453 |
| Copyright terms: Public domain | W3C validator |