Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochexmidlem6 | Structured version Visualization version GIF version |
Description: Lemma for dochexmid 39245. (Contributed by NM, 15-Jan-2015.) |
Ref | Expression |
---|---|
dochexmidlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochexmidlem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochexmidlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochexmidlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
dochexmidlem1.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dochexmidlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dochexmidlem1.p | ⊢ ⊕ = (LSSum‘𝑈) |
dochexmidlem1.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
dochexmidlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochexmidlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
dochexmidlem6.pp | ⊢ (𝜑 → 𝑝 ∈ 𝐴) |
dochexmidlem6.z | ⊢ 0 = (0g‘𝑈) |
dochexmidlem6.m | ⊢ 𝑀 = (𝑋 ⊕ 𝑝) |
dochexmidlem6.xn | ⊢ (𝜑 → 𝑋 ≠ { 0 }) |
dochexmidlem6.c | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
dochexmidlem6.pl | ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
Ref | Expression |
---|---|
dochexmidlem6 | ⊢ (𝜑 → 𝑀 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochexmidlem1.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dochexmidlem1.o | . . . . . . 7 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | dochexmidlem1.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | dochexmidlem1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
5 | dochexmidlem1.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑈) | |
6 | dochexmidlem1.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | dochexmidlem1.p | . . . . . . 7 ⊢ ⊕ = (LSSum‘𝑈) | |
8 | dochexmidlem1.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
9 | dochexmidlem1.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | dochexmidlem1.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
11 | dochexmidlem6.pp | . . . . . . 7 ⊢ (𝜑 → 𝑝 ∈ 𝐴) | |
12 | dochexmidlem6.z | . . . . . . 7 ⊢ 0 = (0g‘𝑈) | |
13 | dochexmidlem6.m | . . . . . . 7 ⊢ 𝑀 = (𝑋 ⊕ 𝑝) | |
14 | dochexmidlem6.xn | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ { 0 }) | |
15 | dochexmidlem6.pl | . . . . . . 7 ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | dochexmidlem5 39241 | . . . . . 6 ⊢ (𝜑 → (( ⊥ ‘𝑋) ∩ 𝑀) = { 0 }) |
17 | 16 | fveq2d 6739 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑀)) = ( ⊥ ‘{ 0 })) |
18 | 1, 3, 2, 4, 12 | doch0 39135 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{ 0 }) = 𝑉) |
19 | 9, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{ 0 }) = 𝑉) |
20 | 17, 19 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑀)) = 𝑉) |
21 | 20 | ineq1d 4140 | . . 3 ⊢ (𝜑 → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑀)) ∩ 𝑀) = (𝑉 ∩ 𝑀)) |
22 | eqid 2738 | . . . . . . 7 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
23 | dochexmidlem6.c | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | |
24 | 4, 5 | lssss 19997 | . . . . . . . . . . 11 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉) |
25 | 10, 24 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
26 | 1, 3, 4, 2 | dochssv 39132 | . . . . . . . . . 10 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ⊆ 𝑉) |
27 | 9, 25, 26 | syl2anc 587 | . . . . . . . . 9 ⊢ (𝜑 → ( ⊥ ‘𝑋) ⊆ 𝑉) |
28 | 1, 22, 3, 4, 2 | dochcl 39130 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ 𝑉) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
29 | 9, 27, 28 | syl2anc 587 | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
30 | 23, 29 | eqeltrrd 2840 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
31 | 1, 22, 3, 7, 8, 9, 30, 11 | dihsmatrn 39213 | . . . . . 6 ⊢ (𝜑 → (𝑋 ⊕ 𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
32 | 13, 31 | eqeltrid 2843 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
33 | 1, 3, 22, 5 | dihrnlss 39054 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑀 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → 𝑀 ∈ 𝑆) |
34 | 9, 32, 33 | syl2anc 587 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑆) |
35 | 1, 3, 9 | dvhlmod 38887 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | 5, 8, 35, 11 | lsatlssel 36774 | . . . . . . . . 9 ⊢ (𝜑 → 𝑝 ∈ 𝑆) |
37 | 5, 7 | lsmcl 20144 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑝 ∈ 𝑆) → (𝑋 ⊕ 𝑝) ∈ 𝑆) |
38 | 35, 10, 36, 37 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 ⊕ 𝑝) ∈ 𝑆) |
39 | 4, 5 | lssss 19997 | . . . . . . . 8 ⊢ ((𝑋 ⊕ 𝑝) ∈ 𝑆 → (𝑋 ⊕ 𝑝) ⊆ 𝑉) |
40 | 38, 39 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ⊕ 𝑝) ⊆ 𝑉) |
41 | 13, 40 | eqsstrid 3963 | . . . . . 6 ⊢ (𝜑 → 𝑀 ⊆ 𝑉) |
42 | 1, 22, 3, 4, 2, 9, 41 | dochoccl 39146 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ran ((DIsoH‘𝐾)‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘𝑀)) = 𝑀)) |
43 | 32, 42 | mpbid 235 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑀)) = 𝑀) |
44 | 5 | lsssssubg 20019 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈)) |
45 | 35, 44 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑈)) |
46 | 45, 10 | sseldd 3916 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (SubGrp‘𝑈)) |
47 | 45, 36 | sseldd 3916 | . . . . . 6 ⊢ (𝜑 → 𝑝 ∈ (SubGrp‘𝑈)) |
48 | 7 | lsmub1 19070 | . . . . . 6 ⊢ ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑝 ∈ (SubGrp‘𝑈)) → 𝑋 ⊆ (𝑋 ⊕ 𝑝)) |
49 | 46, 47, 48 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ (𝑋 ⊕ 𝑝)) |
50 | 49, 13 | sseqtrrdi 3966 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑀) |
51 | 1, 3, 5, 2, 9, 10, 34, 43, 50 | dihoml4 39154 | . . 3 ⊢ (𝜑 → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑀)) ∩ 𝑀) = ( ⊥ ‘( ⊥ ‘𝑋))) |
52 | sseqin2 4144 | . . . 4 ⊢ (𝑀 ⊆ 𝑉 ↔ (𝑉 ∩ 𝑀) = 𝑀) | |
53 | 41, 52 | sylib 221 | . . 3 ⊢ (𝜑 → (𝑉 ∩ 𝑀) = 𝑀) |
54 | 21, 51, 53 | 3eqtr3rd 2787 | . 2 ⊢ (𝜑 → 𝑀 = ( ⊥ ‘( ⊥ ‘𝑋))) |
55 | 54, 23 | eqtrd 2778 | 1 ⊢ (𝜑 → 𝑀 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∩ cin 3879 ⊆ wss 3880 {csn 4555 ran crn 5566 ‘cfv 6397 (class class class)co 7231 Basecbs 16784 0gc0g 16968 SubGrpcsubg 18561 LSSumclsm 19047 LModclmod 19923 LSubSpclss 19992 LSpanclspn 20032 LSAtomsclsa 36751 HLchlt 37127 LHypclh 37761 DVecHcdvh 38855 DIsoHcdih 39005 ocHcoch 39124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-riotaBAD 36730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-tpos 7988 df-undef 8035 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-er 8411 df-map 8530 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-n0 12115 df-z 12201 df-uz 12463 df-fz 13120 df-struct 16724 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-plusg 16839 df-mulr 16840 df-sca 16842 df-vsca 16843 df-0g 16970 df-mre 17113 df-mrc 17114 df-acs 17116 df-proset 17826 df-poset 17844 df-plt 17860 df-lub 17876 df-glb 17877 df-join 17878 df-meet 17879 df-p0 17955 df-p1 17956 df-lat 17962 df-clat 18029 df-mgm 18138 df-sgrp 18187 df-mnd 18198 df-submnd 18243 df-grp 18392 df-minusg 18393 df-sbg 18394 df-subg 18564 df-cntz 18735 df-oppg 18762 df-lsm 19049 df-cmn 19196 df-abl 19197 df-mgp 19529 df-ur 19541 df-ring 19588 df-oppr 19665 df-dvdsr 19683 df-unit 19684 df-invr 19714 df-dvr 19725 df-drng 19793 df-lmod 19925 df-lss 19993 df-lsp 20033 df-lvec 20164 df-lsatoms 36753 df-lcv 36796 df-oposet 36953 df-ol 36955 df-oml 36956 df-covers 37043 df-ats 37044 df-atl 37075 df-cvlat 37099 df-hlat 37128 df-llines 37275 df-lplanes 37276 df-lvols 37277 df-lines 37278 df-psubsp 37280 df-pmap 37281 df-padd 37573 df-lhyp 37765 df-laut 37766 df-ldil 37881 df-ltrn 37882 df-trl 37936 df-tgrp 38520 df-tendo 38532 df-edring 38534 df-dveca 38780 df-disoa 38806 df-dvech 38856 df-dib 38916 df-dic 38950 df-dih 39006 df-doch 39125 df-djh 39172 |
This theorem is referenced by: dochexmidlem8 39244 |
Copyright terms: Public domain | W3C validator |