Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochexmidlem6 Structured version   Visualization version   GIF version

Theorem dochexmidlem6 38639
Description: Lemma for dochexmid 38642. (Contributed by NM, 15-Jan-2015.)
Hypotheses
Ref Expression
dochexmidlem1.h 𝐻 = (LHyp‘𝐾)
dochexmidlem1.o = ((ocH‘𝐾)‘𝑊)
dochexmidlem1.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochexmidlem1.v 𝑉 = (Base‘𝑈)
dochexmidlem1.s 𝑆 = (LSubSp‘𝑈)
dochexmidlem1.n 𝑁 = (LSpan‘𝑈)
dochexmidlem1.p = (LSSum‘𝑈)
dochexmidlem1.a 𝐴 = (LSAtoms‘𝑈)
dochexmidlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochexmidlem1.x (𝜑𝑋𝑆)
dochexmidlem6.pp (𝜑𝑝𝐴)
dochexmidlem6.z 0 = (0g𝑈)
dochexmidlem6.m 𝑀 = (𝑋 𝑝)
dochexmidlem6.xn (𝜑𝑋 ≠ { 0 })
dochexmidlem6.c (𝜑 → ( ‘( 𝑋)) = 𝑋)
dochexmidlem6.pl (𝜑 → ¬ 𝑝 ⊆ (𝑋 ( 𝑋)))
Assertion
Ref Expression
dochexmidlem6 (𝜑𝑀 = 𝑋)

Proof of Theorem dochexmidlem6
StepHypRef Expression
1 dochexmidlem1.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 dochexmidlem1.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
3 dochexmidlem1.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 dochexmidlem1.v . . . . . . 7 𝑉 = (Base‘𝑈)
5 dochexmidlem1.s . . . . . . 7 𝑆 = (LSubSp‘𝑈)
6 dochexmidlem1.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
7 dochexmidlem1.p . . . . . . 7 = (LSSum‘𝑈)
8 dochexmidlem1.a . . . . . . 7 𝐴 = (LSAtoms‘𝑈)
9 dochexmidlem1.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 dochexmidlem1.x . . . . . . 7 (𝜑𝑋𝑆)
11 dochexmidlem6.pp . . . . . . 7 (𝜑𝑝𝐴)
12 dochexmidlem6.z . . . . . . 7 0 = (0g𝑈)
13 dochexmidlem6.m . . . . . . 7 𝑀 = (𝑋 𝑝)
14 dochexmidlem6.xn . . . . . . 7 (𝜑𝑋 ≠ { 0 })
15 dochexmidlem6.pl . . . . . . 7 (𝜑 → ¬ 𝑝 ⊆ (𝑋 ( 𝑋)))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dochexmidlem5 38638 . . . . . 6 (𝜑 → (( 𝑋) ∩ 𝑀) = { 0 })
1716fveq2d 6647 . . . . 5 (𝜑 → ( ‘(( 𝑋) ∩ 𝑀)) = ( ‘{ 0 }))
181, 3, 2, 4, 12doch0 38532 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ‘{ 0 }) = 𝑉)
199, 18syl 17 . . . . 5 (𝜑 → ( ‘{ 0 }) = 𝑉)
2017, 19eqtrd 2856 . . . 4 (𝜑 → ( ‘(( 𝑋) ∩ 𝑀)) = 𝑉)
2120ineq1d 4163 . . 3 (𝜑 → (( ‘(( 𝑋) ∩ 𝑀)) ∩ 𝑀) = (𝑉𝑀))
22 eqid 2821 . . . . . . 7 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
23 dochexmidlem6.c . . . . . . . 8 (𝜑 → ( ‘( 𝑋)) = 𝑋)
244, 5lssss 19683 . . . . . . . . . . 11 (𝑋𝑆𝑋𝑉)
2510, 24syl 17 . . . . . . . . . 10 (𝜑𝑋𝑉)
261, 3, 4, 2dochssv 38529 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ( 𝑋) ⊆ 𝑉)
279, 25, 26syl2anc 587 . . . . . . . . 9 (𝜑 → ( 𝑋) ⊆ 𝑉)
281, 22, 3, 4, 2dochcl 38527 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ⊆ 𝑉) → ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
299, 27, 28syl2anc 587 . . . . . . . 8 (𝜑 → ( ‘( 𝑋)) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3023, 29eqeltrrd 2913 . . . . . . 7 (𝜑𝑋 ∈ ran ((DIsoH‘𝐾)‘𝑊))
311, 22, 3, 7, 8, 9, 30, 11dihsmatrn 38610 . . . . . 6 (𝜑 → (𝑋 𝑝) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3213, 31eqeltrid 2916 . . . . 5 (𝜑𝑀 ∈ ran ((DIsoH‘𝐾)‘𝑊))
331, 3, 22, 5dihrnlss 38451 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑀 ∈ ran ((DIsoH‘𝐾)‘𝑊)) → 𝑀𝑆)
349, 32, 33syl2anc 587 . . . 4 (𝜑𝑀𝑆)
351, 3, 9dvhlmod 38284 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
365, 8, 35, 11lsatlssel 36171 . . . . . . . . 9 (𝜑𝑝𝑆)
375, 7lsmcl 19830 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ 𝑋𝑆𝑝𝑆) → (𝑋 𝑝) ∈ 𝑆)
3835, 10, 36, 37syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑋 𝑝) ∈ 𝑆)
394, 5lssss 19683 . . . . . . . 8 ((𝑋 𝑝) ∈ 𝑆 → (𝑋 𝑝) ⊆ 𝑉)
4038, 39syl 17 . . . . . . 7 (𝜑 → (𝑋 𝑝) ⊆ 𝑉)
4113, 40eqsstrid 3991 . . . . . 6 (𝜑𝑀𝑉)
421, 22, 3, 4, 2, 9, 41dochoccl 38543 . . . . 5 (𝜑 → (𝑀 ∈ ran ((DIsoH‘𝐾)‘𝑊) ↔ ( ‘( 𝑀)) = 𝑀))
4332, 42mpbid 235 . . . 4 (𝜑 → ( ‘( 𝑀)) = 𝑀)
445lsssssubg 19705 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑈))
4535, 44syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (SubGrp‘𝑈))
4645, 10sseldd 3944 . . . . . 6 (𝜑𝑋 ∈ (SubGrp‘𝑈))
4745, 36sseldd 3944 . . . . . 6 (𝜑𝑝 ∈ (SubGrp‘𝑈))
487lsmub1 18760 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑈) ∧ 𝑝 ∈ (SubGrp‘𝑈)) → 𝑋 ⊆ (𝑋 𝑝))
4946, 47, 48syl2anc 587 . . . . 5 (𝜑𝑋 ⊆ (𝑋 𝑝))
5049, 13sseqtrrdi 3994 . . . 4 (𝜑𝑋𝑀)
511, 3, 5, 2, 9, 10, 34, 43, 50dihoml4 38551 . . 3 (𝜑 → (( ‘(( 𝑋) ∩ 𝑀)) ∩ 𝑀) = ( ‘( 𝑋)))
52 sseqin2 4167 . . . 4 (𝑀𝑉 ↔ (𝑉𝑀) = 𝑀)
5341, 52sylib 221 . . 3 (𝜑 → (𝑉𝑀) = 𝑀)
5421, 51, 533eqtr3rd 2865 . 2 (𝜑𝑀 = ( ‘( 𝑋)))
5554, 23eqtrd 2856 1 (𝜑𝑀 = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3007  cin 3909  wss 3910  {csn 4540  ran crn 5529  cfv 6328  (class class class)co 7130  Basecbs 16461  0gc0g 16691  SubGrpcsubg 18251  LSSumclsm 18737  LModclmod 19609  LSubSpclss 19678  LSpanclspn 19718  LSAtomsclsa 36148  HLchlt 36524  LHypclh 37158  DVecHcdvh 38252  DIsoHcdih 38402  ocHcoch 38521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-riotaBAD 36127
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-tpos 7867  df-undef 7914  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-sca 16559  df-vsca 16560  df-0g 16693  df-mre 16835  df-mrc 16836  df-acs 16838  df-proset 17516  df-poset 17534  df-plt 17546  df-lub 17562  df-glb 17563  df-join 17564  df-meet 17565  df-p0 17627  df-p1 17628  df-lat 17634  df-clat 17696  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-grp 18084  df-minusg 18085  df-sbg 18086  df-subg 18254  df-cntz 18425  df-oppg 18452  df-lsm 18739  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-ring 19277  df-oppr 19351  df-dvdsr 19369  df-unit 19370  df-invr 19400  df-dvr 19411  df-drng 19479  df-lmod 19611  df-lss 19679  df-lsp 19719  df-lvec 19850  df-lsatoms 36150  df-lcv 36193  df-oposet 36350  df-ol 36352  df-oml 36353  df-covers 36440  df-ats 36441  df-atl 36472  df-cvlat 36496  df-hlat 36525  df-llines 36672  df-lplanes 36673  df-lvols 36674  df-lines 36675  df-psubsp 36677  df-pmap 36678  df-padd 36970  df-lhyp 37162  df-laut 37163  df-ldil 37278  df-ltrn 37279  df-trl 37333  df-tgrp 37917  df-tendo 37929  df-edring 37931  df-dveca 38177  df-disoa 38203  df-dvech 38253  df-dib 38313  df-dic 38347  df-dih 38403  df-doch 38522  df-djh 38569
This theorem is referenced by:  dochexmidlem8  38641
  Copyright terms: Public domain W3C validator