Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihss Structured version   Visualization version   GIF version

Theorem dihss 41231
Description: The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dihss.b 𝐵 = (Base‘𝐾)
dihss.h 𝐻 = (LHyp‘𝐾)
dihss.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihss.v 𝑉 = (Base‘𝑈)
Assertion
Ref Expression
dihss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ⊆ 𝑉)

Proof of Theorem dihss
StepHypRef Expression
1 dihss.b . . 3 𝐵 = (Base‘𝐾)
2 dihss.h . . 3 𝐻 = (LHyp‘𝐾)
3 dihss.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
4 dihss.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2736 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
61, 2, 3, 4, 5dihlss 41230 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ∈ (LSubSp‘𝑈))
7 dihss.v . . 3 𝑉 = (Base‘𝑈)
87, 5lssss 20926 . 2 ((𝐼𝑋) ∈ (LSubSp‘𝑈) → (𝐼𝑋) ⊆ 𝑉)
96, 8syl 17 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝐵) → (𝐼𝑋) ⊆ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3950  cfv 6559  Basecbs 17243  LSubSpclss 20921  HLchlt 39329  LHypclh 39964  DVecHcdvh 41058  DIsoHcdih 41208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-riotaBAD 38932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-tpos 8247  df-undef 8294  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-n0 12523  df-z 12610  df-uz 12875  df-fz 13544  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ress 17271  df-plusg 17306  df-mulr 17307  df-sca 17309  df-vsca 17310  df-0g 17482  df-proset 18336  df-poset 18355  df-plt 18371  df-lub 18387  df-glb 18388  df-join 18389  df-meet 18390  df-p0 18466  df-p1 18467  df-lat 18473  df-clat 18540  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-submnd 18793  df-grp 18950  df-minusg 18951  df-sbg 18952  df-subg 19137  df-cntz 19331  df-lsm 19650  df-cmn 19796  df-abl 19797  df-mgp 20134  df-rng 20146  df-ur 20175  df-ring 20228  df-oppr 20326  df-dvdsr 20349  df-unit 20350  df-invr 20380  df-dvr 20393  df-drng 20723  df-lmod 20852  df-lss 20922  df-lsp 20962  df-lvec 21094  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39478  df-lplanes 39479  df-lvols 39480  df-lines 39481  df-psubsp 39483  df-pmap 39484  df-padd 39776  df-lhyp 39968  df-laut 39969  df-ldil 40084  df-ltrn 40085  df-trl 40139  df-tendo 40735  df-edring 40737  df-disoa 41009  df-dvech 41059  df-dib 41119  df-dic 41153  df-dih 41209
This theorem is referenced by:  dihssxp  41232  dihvalrel  41259  djhlj  41381  dihsumssj  41388
  Copyright terms: Public domain W3C validator