MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4b Structured version   Visualization version   GIF version

Theorem minveclem4b 25180
Description: Lemma for minvec 25185. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Baseβ€˜π‘ˆ)
minvec.m βˆ’ = (-gβ€˜π‘ˆ)
minvec.n 𝑁 = (normβ€˜π‘ˆ)
minvec.u (πœ‘ β†’ π‘ˆ ∈ β„‚PreHil)
minvec.y (πœ‘ β†’ π‘Œ ∈ (LSubSpβ€˜π‘ˆ))
minvec.w (πœ‘ β†’ (π‘ˆ β†Ύs π‘Œ) ∈ CMetSp)
minvec.a (πœ‘ β†’ 𝐴 ∈ 𝑋)
minvec.j 𝐽 = (TopOpenβ€˜π‘ˆ)
minvec.r 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴 βˆ’ 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((distβ€˜π‘ˆ) β†Ύ (𝑋 Γ— 𝑋))
minvec.f 𝐹 = ran (π‘Ÿ ∈ ℝ+ ↦ {𝑦 ∈ π‘Œ ∣ ((𝐴𝐷𝑦)↑2) ≀ ((𝑆↑2) + π‘Ÿ)})
minvec.p 𝑃 = βˆͺ (𝐽 fLim (𝑋filGen𝐹))
Assertion
Ref Expression
minveclem4b (πœ‘ β†’ 𝑃 ∈ 𝑋)
Distinct variable groups:   𝑦, βˆ’   𝑦,π‘Ÿ,𝐴   𝐽,π‘Ÿ,𝑦   𝑦,𝑃   𝑦,𝐹   𝑦,𝑁   πœ‘,π‘Ÿ,𝑦   𝑦,𝑅   𝑦,π‘ˆ   𝑋,π‘Ÿ,𝑦   π‘Œ,π‘Ÿ,𝑦   𝐷,π‘Ÿ,𝑦   𝑆,π‘Ÿ,𝑦
Allowed substitution hints:   𝑃(π‘Ÿ)   𝑅(π‘Ÿ)   π‘ˆ(π‘Ÿ)   𝐹(π‘Ÿ)   βˆ’ (π‘Ÿ)   𝑁(π‘Ÿ)

Proof of Theorem minveclem4b
StepHypRef Expression
1 minvec.y . . 3 (πœ‘ β†’ π‘Œ ∈ (LSubSpβ€˜π‘ˆ))
2 minvec.x . . . 4 𝑋 = (Baseβ€˜π‘ˆ)
3 eqid 2731 . . . 4 (LSubSpβ€˜π‘ˆ) = (LSubSpβ€˜π‘ˆ)
42, 3lssss 20692 . . 3 (π‘Œ ∈ (LSubSpβ€˜π‘ˆ) β†’ π‘Œ βŠ† 𝑋)
51, 4syl 17 . 2 (πœ‘ β†’ π‘Œ βŠ† 𝑋)
6 minvec.m . . . 4 βˆ’ = (-gβ€˜π‘ˆ)
7 minvec.n . . . 4 𝑁 = (normβ€˜π‘ˆ)
8 minvec.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ β„‚PreHil)
9 minvec.w . . . 4 (πœ‘ β†’ (π‘ˆ β†Ύs π‘Œ) ∈ CMetSp)
10 minvec.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑋)
11 minvec.j . . . 4 𝐽 = (TopOpenβ€˜π‘ˆ)
12 minvec.r . . . 4 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴 βˆ’ 𝑦)))
13 minvec.s . . . 4 𝑆 = inf(𝑅, ℝ, < )
14 minvec.d . . . 4 𝐷 = ((distβ€˜π‘ˆ) β†Ύ (𝑋 Γ— 𝑋))
15 minvec.f . . . 4 𝐹 = ran (π‘Ÿ ∈ ℝ+ ↦ {𝑦 ∈ π‘Œ ∣ ((𝐴𝐷𝑦)↑2) ≀ ((𝑆↑2) + π‘Ÿ)})
16 minvec.p . . . 4 𝑃 = βˆͺ (𝐽 fLim (𝑋filGen𝐹))
172, 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16minveclem4a 25179 . . 3 (πœ‘ β†’ 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ π‘Œ))
1817elin2d 4199 . 2 (πœ‘ β†’ 𝑃 ∈ π‘Œ)
195, 18sseldd 3983 1 (πœ‘ β†’ 𝑃 ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  {crab 3431   βŠ† wss 3948  βˆͺ cuni 4908   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  ran crn 5677   β†Ύ cres 5678  β€˜cfv 6543  (class class class)co 7412  infcinf 9440  β„cr 11113   + caddc 11117   < clt 11253   ≀ cle 11254  2c2 12272  β„+crp 12979  β†‘cexp 14032  Basecbs 17149   β†Ύs cress 17178  distcds 17211  TopOpenctopn 17372  -gcsg 18858  LSubSpclss 20687  filGencfg 21134   fLim cflim 23659  normcnm 24306  β„‚PreHilccph 24915  CMetSpccms 25081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8215  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fi 9410  df-sup 9441  df-inf 9442  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ico 13335  df-icc 13336  df-fz 13490  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-rest 17373  df-0g 17392  df-topgen 17394  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18988  df-subg 19040  df-ghm 19129  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-rhm 20364  df-subrg 20460  df-drng 20503  df-staf 20597  df-srng 20598  df-lmod 20617  df-lss 20688  df-lmhm 20778  df-lvec 20859  df-sra 20931  df-rgmod 20932  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-phl 21399  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-ntr 22745  df-nei 22823  df-haus 23040  df-fil 23571  df-flim 23664  df-xms 24047  df-ms 24048  df-nm 24312  df-ngp 24313  df-nlm 24316  df-clm 24811  df-cph 24917  df-cfil 25004  df-cmet 25006  df-cms 25084
This theorem is referenced by:  minveclem4  25181
  Copyright terms: Public domain W3C validator