![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minveclem4b | Structured version Visualization version GIF version |
Description: Lemma for minvec 25185. The convergent point of the Cauchy sequence πΉ is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
minvec.x | β’ π = (Baseβπ) |
minvec.m | β’ β = (-gβπ) |
minvec.n | β’ π = (normβπ) |
minvec.u | β’ (π β π β βPreHil) |
minvec.y | β’ (π β π β (LSubSpβπ)) |
minvec.w | β’ (π β (π βΎs π) β CMetSp) |
minvec.a | β’ (π β π΄ β π) |
minvec.j | β’ π½ = (TopOpenβπ) |
minvec.r | β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) |
minvec.s | β’ π = inf(π , β, < ) |
minvec.d | β’ π· = ((distβπ) βΎ (π Γ π)) |
minvec.f | β’ πΉ = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) |
minvec.p | β’ π = βͺ (π½ fLim (πfilGenπΉ)) |
Ref | Expression |
---|---|
minveclem4b | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minvec.y | . . 3 β’ (π β π β (LSubSpβπ)) | |
2 | minvec.x | . . . 4 β’ π = (Baseβπ) | |
3 | eqid 2731 | . . . 4 β’ (LSubSpβπ) = (LSubSpβπ) | |
4 | 2, 3 | lssss 20692 | . . 3 β’ (π β (LSubSpβπ) β π β π) |
5 | 1, 4 | syl 17 | . 2 β’ (π β π β π) |
6 | minvec.m | . . . 4 β’ β = (-gβπ) | |
7 | minvec.n | . . . 4 β’ π = (normβπ) | |
8 | minvec.u | . . . 4 β’ (π β π β βPreHil) | |
9 | minvec.w | . . . 4 β’ (π β (π βΎs π) β CMetSp) | |
10 | minvec.a | . . . 4 β’ (π β π΄ β π) | |
11 | minvec.j | . . . 4 β’ π½ = (TopOpenβπ) | |
12 | minvec.r | . . . 4 β’ π = ran (π¦ β π β¦ (πβ(π΄ β π¦))) | |
13 | minvec.s | . . . 4 β’ π = inf(π , β, < ) | |
14 | minvec.d | . . . 4 β’ π· = ((distβπ) βΎ (π Γ π)) | |
15 | minvec.f | . . . 4 β’ πΉ = ran (π β β+ β¦ {π¦ β π β£ ((π΄π·π¦)β2) β€ ((πβ2) + π)}) | |
16 | minvec.p | . . . 4 β’ π = βͺ (π½ fLim (πfilGenπΉ)) | |
17 | 2, 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16 | minveclem4a 25179 | . . 3 β’ (π β π β ((π½ fLim (πfilGenπΉ)) β© π)) |
18 | 17 | elin2d 4199 | . 2 β’ (π β π β π) |
19 | 5, 18 | sseldd 3983 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {crab 3431 β wss 3948 βͺ cuni 4908 class class class wbr 5148 β¦ cmpt 5231 Γ cxp 5674 ran crn 5677 βΎ cres 5678 βcfv 6543 (class class class)co 7412 infcinf 9440 βcr 11113 + caddc 11117 < clt 11253 β€ cle 11254 2c2 12272 β+crp 12979 βcexp 14032 Basecbs 17149 βΎs cress 17178 distcds 17211 TopOpenctopn 17372 -gcsg 18858 LSubSpclss 20687 filGencfg 21134 fLim cflim 23659 normcnm 24306 βPreHilccph 24915 CMetSpccms 25081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fi 9410 df-sup 9441 df-inf 9442 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ico 13335 df-icc 13336 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-rest 17373 df-0g 17392 df-topgen 17394 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-rhm 20364 df-subrg 20460 df-drng 20503 df-staf 20597 df-srng 20598 df-lmod 20617 df-lss 20688 df-lmhm 20778 df-lvec 20859 df-sra 20931 df-rgmod 20932 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-phl 21399 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-ntr 22745 df-nei 22823 df-haus 23040 df-fil 23571 df-flim 23664 df-xms 24047 df-ms 24048 df-nm 24312 df-ngp 24313 df-nlm 24316 df-clm 24811 df-cph 24917 df-cfil 25004 df-cmet 25006 df-cms 25084 |
This theorem is referenced by: minveclem4 25181 |
Copyright terms: Public domain | W3C validator |