| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem4b | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25353. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
| minvec.f | ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
| minvec.p | ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) |
| Ref | Expression |
|---|---|
| minveclem4b | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 2 | minvec.x | . . . 4 ⊢ 𝑋 = (Base‘𝑈) | |
| 3 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 4 | 2, 3 | lssss 20858 | . . 3 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 6 | minvec.m | . . . 4 ⊢ − = (-g‘𝑈) | |
| 7 | minvec.n | . . . 4 ⊢ 𝑁 = (norm‘𝑈) | |
| 8 | minvec.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 9 | minvec.w | . . . 4 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
| 10 | minvec.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 11 | minvec.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑈) | |
| 12 | minvec.r | . . . 4 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 13 | minvec.s | . . . 4 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
| 14 | minvec.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
| 15 | minvec.f | . . . 4 ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) | |
| 16 | minvec.p | . . . 4 ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) | |
| 17 | 2, 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16 | minveclem4a 25347 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
| 18 | 17 | elin2d 4158 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| 19 | 5, 18 | sseldd 3938 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ↦ cmpt 5176 × cxp 5621 ran crn 5624 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 infcinf 9350 ℝcr 11027 + caddc 11031 < clt 11168 ≤ cle 11169 2c2 12202 ℝ+crp 12912 ↑cexp 13987 Basecbs 17139 ↾s cress 17160 distcds 17189 TopOpenctopn 17344 -gcsg 18833 LSubSpclss 20853 filGencfg 21269 fLim cflim 23838 normcnm 24481 ℂPreHilccph 25083 CMetSpccms 25249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ico 13273 df-icc 13274 df-fz 13430 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-rest 17345 df-0g 17364 df-topgen 17366 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-grp 18834 df-minusg 18835 df-sbg 18836 df-mulg 18966 df-subg 19021 df-ghm 19111 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-cring 20140 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-rhm 20376 df-subrg 20474 df-drng 20635 df-staf 20743 df-srng 20744 df-lmod 20784 df-lss 20854 df-lmhm 20945 df-lvec 21026 df-sra 21096 df-rgmod 21097 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-cnfld 21281 df-phl 21552 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-ntr 22924 df-nei 23002 df-haus 23219 df-fil 23750 df-flim 23843 df-xms 24225 df-ms 24226 df-nm 24487 df-ngp 24488 df-nlm 24491 df-clm 24980 df-cph 25085 df-cfil 25172 df-cmet 25174 df-cms 25252 |
| This theorem is referenced by: minveclem4 25349 |
| Copyright terms: Public domain | W3C validator |