MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem4b Structured version   Visualization version   GIF version

Theorem minveclem4b 25348
Description: Lemma for minvec 25353. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
minvec.p 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
Assertion
Ref Expression
minveclem4b (𝜑𝑃𝑋)
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝑃   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑃(𝑟)   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem4b
StepHypRef Expression
1 minvec.y . . 3 (𝜑𝑌 ∈ (LSubSp‘𝑈))
2 minvec.x . . . 4 𝑋 = (Base‘𝑈)
3 eqid 2729 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
42, 3lssss 20858 . . 3 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
51, 4syl 17 . 2 (𝜑𝑌𝑋)
6 minvec.m . . . 4 = (-g𝑈)
7 minvec.n . . . 4 𝑁 = (norm‘𝑈)
8 minvec.u . . . 4 (𝜑𝑈 ∈ ℂPreHil)
9 minvec.w . . . 4 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
10 minvec.a . . . 4 (𝜑𝐴𝑋)
11 minvec.j . . . 4 𝐽 = (TopOpen‘𝑈)
12 minvec.r . . . 4 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
13 minvec.s . . . 4 𝑆 = inf(𝑅, ℝ, < )
14 minvec.d . . . 4 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
15 minvec.f . . . 4 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
16 minvec.p . . . 4 𝑃 = (𝐽 fLim (𝑋filGen𝐹))
172, 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16minveclem4a 25347 . . 3 (𝜑𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌))
1817elin2d 4158 . 2 (𝜑𝑃𝑌)
195, 18sseldd 3938 1 (𝜑𝑃𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  wss 3905   cuni 4861   class class class wbr 5095  cmpt 5176   × cxp 5621  ran crn 5624  cres 5625  cfv 6486  (class class class)co 7353  infcinf 9350  cr 11027   + caddc 11031   < clt 11168  cle 11169  2c2 12202  +crp 12912  cexp 13987  Basecbs 17139  s cress 17160  distcds 17189  TopOpenctopn 17344  -gcsg 18833  LSubSpclss 20853  filGencfg 21269   fLim cflim 23838  normcnm 24481  ℂPreHilccph 25083  CMetSpccms 25249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13273  df-icc 13274  df-fz 13430  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-rest 17345  df-0g 17364  df-topgen 17366  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-dvr 20305  df-rhm 20376  df-subrg 20474  df-drng 20635  df-staf 20743  df-srng 20744  df-lmod 20784  df-lss 20854  df-lmhm 20945  df-lvec 21026  df-sra 21096  df-rgmod 21097  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-phl 21552  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-ntr 22924  df-nei 23002  df-haus 23219  df-fil 23750  df-flim 23843  df-xms 24225  df-ms 24226  df-nm 24487  df-ngp 24488  df-nlm 24491  df-clm 24980  df-cph 25085  df-cfil 25172  df-cmet 25174  df-cms 25252
This theorem is referenced by:  minveclem4  25349
  Copyright terms: Public domain W3C validator