| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveclem4b | Structured version Visualization version GIF version | ||
| Description: Lemma for minvec 25312. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| minvec.x | ⊢ 𝑋 = (Base‘𝑈) |
| minvec.m | ⊢ − = (-g‘𝑈) |
| minvec.n | ⊢ 𝑁 = (norm‘𝑈) |
| minvec.u | ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| minvec.y | ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| minvec.w | ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| minvec.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minvec.j | ⊢ 𝐽 = (TopOpen‘𝑈) |
| minvec.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| minvec.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| minvec.d | ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
| minvec.f | ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
| minvec.p | ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) |
| Ref | Expression |
|---|---|
| minveclem4b | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minvec.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) | |
| 2 | minvec.x | . . . 4 ⊢ 𝑋 = (Base‘𝑈) | |
| 3 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 4 | 2, 3 | lssss 20818 | . . 3 ⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 6 | minvec.m | . . . 4 ⊢ − = (-g‘𝑈) | |
| 7 | minvec.n | . . . 4 ⊢ 𝑁 = (norm‘𝑈) | |
| 8 | minvec.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ ℂPreHil) | |
| 9 | minvec.w | . . . 4 ⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) | |
| 10 | minvec.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 11 | minvec.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑈) | |
| 12 | minvec.r | . . . 4 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) | |
| 13 | minvec.s | . . . 4 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
| 14 | minvec.d | . . . 4 ⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) | |
| 15 | minvec.f | . . . 4 ⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) | |
| 16 | minvec.p | . . . 4 ⊢ 𝑃 = ∪ (𝐽 fLim (𝑋filGen𝐹)) | |
| 17 | 2, 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16 | minveclem4a 25306 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ((𝐽 fLim (𝑋filGen𝐹)) ∩ 𝑌)) |
| 18 | 17 | elin2d 4164 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝑌) |
| 19 | 5, 18 | sseldd 3944 | 1 ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ⊆ wss 3911 ∪ cuni 4867 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 ran crn 5632 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 infcinf 9368 ℝcr 11043 + caddc 11047 < clt 11184 ≤ cle 11185 2c2 12217 ℝ+crp 12927 ↑cexp 14002 Basecbs 17155 ↾s cress 17176 distcds 17205 TopOpenctopn 17360 -gcsg 18843 LSubSpclss 20813 filGencfg 21229 fLim cflim 23797 normcnm 24440 ℂPreHilccph 25042 CMetSpccms 25208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-icc 13289 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17361 df-0g 17380 df-topgen 17382 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrg 20455 df-drng 20616 df-staf 20724 df-srng 20725 df-lmod 20744 df-lss 20814 df-lmhm 20905 df-lvec 20986 df-sra 21056 df-rgmod 21057 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-phl 21511 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-ntr 22883 df-nei 22961 df-haus 23178 df-fil 23709 df-flim 23802 df-xms 24184 df-ms 24185 df-nm 24446 df-ngp 24447 df-nlm 24450 df-clm 24939 df-cph 25044 df-cfil 25131 df-cmet 25133 df-cms 25211 |
| This theorem is referenced by: minveclem4 25308 |
| Copyright terms: Public domain | W3C validator |