Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochord2N | Structured version Visualization version GIF version |
Description: Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
doch11.h | ⊢ 𝐻 = (LHyp‘𝐾) |
doch11.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
doch11.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
doch11.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
doch11.x | ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) |
doch11.y | ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) |
Ref | Expression |
---|---|
dochord2N | ⊢ (𝜑 → (( ⊥ ‘𝑋) ⊆ 𝑌 ↔ ( ⊥ ‘𝑌) ⊆ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | doch11.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | doch11.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
3 | doch11.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | doch11.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
5 | doch11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ran 𝐼) | |
6 | eqid 2736 | . . . . . . 7 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
7 | eqid 2736 | . . . . . . 7 ⊢ (LSubSp‘((DVecH‘𝐾)‘𝑊)) = (LSubSp‘((DVecH‘𝐾)‘𝑊)) | |
8 | 1, 6, 2, 7 | dihrnlss 39596 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))) |
9 | 4, 5, 8 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊))) |
10 | eqid 2736 | . . . . . 6 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
11 | 10, 7 | lssss 20305 | . . . . 5 ⊢ (𝑋 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑊)) → 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
12 | 9, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) |
13 | 1, 2, 6, 10, 3 | dochcl 39672 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
14 | 4, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
15 | doch11.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ran 𝐼) | |
16 | 1, 2, 3, 4, 14, 15 | dochord 39689 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑋) ⊆ 𝑌 ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘( ⊥ ‘𝑋)))) |
17 | 1, 2, 3 | dochoc 39686 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
18 | 4, 5, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
19 | 18 | sseq2d 3964 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑌) ⊆ ( ⊥ ‘( ⊥ ‘𝑋)) ↔ ( ⊥ ‘𝑌) ⊆ 𝑋)) |
20 | 16, 19 | bitrd 278 | 1 ⊢ (𝜑 → (( ⊥ ‘𝑋) ⊆ 𝑌 ↔ ( ⊥ ‘𝑌) ⊆ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ran crn 5622 ‘cfv 6480 Basecbs 17010 LSubSpclss 20300 HLchlt 37668 LHypclh 38303 DVecHcdvh 39397 DIsoHcdih 39547 ocHcoch 39666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-riotaBAD 37271 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-tpos 8113 df-undef 8160 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-0g 17250 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-clat 18315 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cntz 19020 df-lsm 19338 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-invr 20010 df-dvr 20021 df-drng 20096 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lvec 20472 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 df-lplanes 37818 df-lvols 37819 df-lines 37820 df-psubsp 37822 df-pmap 37823 df-padd 38115 df-lhyp 38307 df-laut 38308 df-ldil 38423 df-ltrn 38424 df-trl 38478 df-tendo 39074 df-edring 39076 df-disoa 39348 df-dvech 39398 df-dib 39458 df-dic 39492 df-dih 39548 df-doch 39667 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |