Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihrnss | Structured version Visualization version GIF version |
Description: The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014.) |
Ref | Expression |
---|---|
dihrnss.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihrnss.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihrnss.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihrnss.v | ⊢ 𝑉 = (Base‘𝑈) |
Ref | Expression |
---|---|
dihrnss | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihrnss.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dihrnss.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | dihrnss.i | . . 3 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
4 | eqid 2736 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
5 | 1, 2, 3, 4 | dihrnlss 39517 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ∈ (LSubSp‘𝑈)) |
6 | dihrnss.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
7 | 6, 4 | lssss 20278 | . 2 ⊢ (𝑋 ∈ (LSubSp‘𝑈) → 𝑋 ⊆ 𝑉) |
8 | 5, 7 | syl 17 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ran crn 5608 ‘cfv 6465 Basecbs 16986 LSubSpclss 20273 HLchlt 37589 LHypclh 38224 DVecHcdvh 39318 DIsoHcdih 39468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-riotaBAD 37192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-tpos 8090 df-undef 8137 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-mulr 17050 df-sca 17052 df-vsca 17053 df-0g 17226 df-proset 18087 df-poset 18105 df-plt 18122 df-lub 18138 df-glb 18139 df-join 18140 df-meet 18141 df-p0 18217 df-p1 18218 df-lat 18224 df-clat 18291 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-grp 18653 df-minusg 18654 df-sbg 18655 df-subg 18825 df-cntz 18996 df-lsm 19314 df-cmn 19460 df-abl 19461 df-mgp 19793 df-ur 19810 df-ring 19857 df-oppr 19934 df-dvdsr 19955 df-unit 19956 df-invr 19986 df-dvr 19997 df-drng 20069 df-lmod 20205 df-lss 20274 df-lsp 20314 df-lvec 20445 df-oposet 37415 df-ol 37417 df-oml 37418 df-covers 37505 df-ats 37506 df-atl 37537 df-cvlat 37561 df-hlat 37590 df-llines 37738 df-lplanes 37739 df-lvols 37740 df-lines 37741 df-psubsp 37743 df-pmap 37744 df-padd 38036 df-lhyp 38228 df-laut 38229 df-ldil 38344 df-ltrn 38345 df-trl 38399 df-tendo 38995 df-edring 38997 df-disoa 39269 df-dvech 39319 df-dib 39379 df-dic 39413 df-dih 39469 |
This theorem is referenced by: dochssv 39595 dochvalr 39597 dochvalr3 39603 dochsscl 39608 dochord 39610 dihoml4c 39616 djhcl 39640 djhljjN 39642 dochdmm1 39650 djh02 39653 djhcvat42 39655 dihjat1lem 39668 dihsmsprn 39670 lclkrlem2g 39753 hlhillcs 40202 hlhilhillem 40204 |
Copyright terms: Public domain | W3C validator |