Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zndvdchrrhm Structured version   Visualization version   GIF version

Theorem zndvdchrrhm 41573
Description: Construction of a ring homomorphism from ℤ/n to 𝑅 when the characteristic of 𝑅 divides 𝑁. (Contributed by metakunt, 4-Jun-2025.)
Hypotheses
Ref Expression
zndvdchrrhm.1 (𝜑𝑅 ∈ Ring)
zndvdchrrhm.2 (𝜑𝑁 ∈ ℕ)
zndvdchrrhm.3 (𝜑 → (chr‘𝑅) ∈ ℤ)
zndvdchrrhm.4 (𝜑 → (chr‘𝑅) ∥ 𝑁)
zndvdchrrhm.5 𝑍 = (ℤ/nℤ‘𝑁)
zndvdchrrhm.6 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
Assertion
Ref Expression
zndvdchrrhm (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑅   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem zndvdchrrhm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zndvdchrrhm.6 . . . 4 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
2 zndvdchrrhm.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nnnn0d 12565 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4 eqid 2725 . . . . . . . 8 (RSpan‘ℤring) = (RSpan‘ℤring)
5 eqid 2725 . . . . . . . 8 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
6 zndvdchrrhm.5 . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
74, 5, 6znbas2 21487 . . . . . . 7 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
83, 7syl 17 . . . . . 6 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
98eqcomd 2731 . . . . 5 (𝜑 → (Base‘𝑍) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
109mpteq1d 5244 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
111, 10eqtrid 2777 . . 3 (𝜑𝐹 = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
12 eqid 2725 . . . 4 (0g𝑅) = (0g𝑅)
13 zndvdchrrhm.1 . . . . 5 (𝜑𝑅 ∈ Ring)
14 eqid 2725 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
1514zrhrhm 21454 . . . . 5 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
1613, 15syl 17 . . . 4 (𝜑 → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
17 eqid 2725 . . . 4 ((ℤRHom‘𝑅) “ {(0g𝑅)}) = ((ℤRHom‘𝑅) “ {(0g𝑅)})
18 nfcv 2891 . . . . 5 𝑦 ((ℤRHom‘𝑅) “ 𝑥)
19 nfcv 2891 . . . . 5 𝑥 ((ℤRHom‘𝑅) “ 𝑦)
20 imaeq2 6060 . . . . . 6 (𝑥 = 𝑦 → ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2120unieqd 4922 . . . . 5 (𝑥 = 𝑦 ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2218, 19, 21cbvmpt 5260 . . . 4 (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑦))
23 zringcrng 21391 . . . . 5 ring ∈ CRing
2423a1i 11 . . . 4 (𝜑 → ℤring ∈ CRing)
25 zringring 21392 . . . . . 6 ring ∈ Ring
2625a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
27 eqid 2725 . . . . . . 7 (LIdeal‘ℤring) = (LIdeal‘ℤring)
2827, 12kerlidl 21185 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
2916, 28syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
30 simpr 483 . . . . . . . . 9 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ {𝑁})
31 elsng 4644 . . . . . . . . . . 11 (𝑎 ∈ {𝑁} → (𝑎 ∈ {𝑁} ↔ 𝑎 = 𝑁))
3230, 31syl5ibcom 244 . . . . . . . . . 10 ((𝜑𝑎 ∈ {𝑁}) → (𝑎 ∈ {𝑁} → 𝑎 = 𝑁))
3332imp 405 . . . . . . . . 9 (((𝜑𝑎 ∈ {𝑁}) ∧ 𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
3430, 33mpdan 685 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
35 zringbas 21396 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
36 eqid 2725 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
3735, 36rhmf 20436 . . . . . . . . . . . . 13 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3815, 37syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3913, 38syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
4039ffnd 6724 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝑅) Fn ℤ)
412nnzd 12618 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
42 zndvdchrrhm.4 . . . . . . . . . . . 12 (𝜑 → (chr‘𝑅) ∥ 𝑁)
43 eqid 2725 . . . . . . . . . . . . . 14 (chr‘𝑅) = (chr‘𝑅)
4443, 14, 12chrdvds 21473 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4513, 41, 44syl2anc 582 . . . . . . . . . . . 12 (𝜑 → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4642, 45mpbid 231 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅))
47 fvexd 6911 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ V)
48 elsng 4644 . . . . . . . . . . . 12 (((ℤRHom‘𝑅)‘𝑁) ∈ V → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4947, 48syl 17 . . . . . . . . . . 11 (𝜑 → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
5046, 49mpbird 256 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)})
5140, 41, 50elpreimad 7067 . . . . . . . . 9 (𝜑𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5251adantr 479 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5334, 52eqeltrd 2825 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5453ex 411 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)})))
5554ssrdv 3982 . . . . 5 (𝜑 → {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
564, 27rspssp 21147 . . . . 5 ((ℤring ∈ Ring ∧ ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring) ∧ {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)})) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5726, 29, 55, 56syl3anc 1368 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5824crngringd 20198 . . . . 5 (𝜑 → ℤring ∈ Ring)
5941adantr 479 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ℤ)
6034, 59eqeltrd 2825 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ℤ)
6160ex 411 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ℤ))
6261ssrdv 3982 . . . . 5 (𝜑 → {𝑁} ⊆ ℤ)
634, 35, 27rspcl 21143 . . . . 5 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6458, 62, 63syl2anc 582 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6512, 16, 17, 5, 22, 24, 57, 64rhmqusnsg 21192 . . 3 (𝜑 → (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
6611, 65eqeltrd 2825 . 2 (𝜑𝐹 ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
67 eqidd 2726 . . 3 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
68 eqidd 2726 . . 3 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
694, 5, 6znadd 21489 . . . . 5 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
703, 69syl 17 . . . 4 (𝜑 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
7170oveqdr 7447 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(+g𝑍)𝑏))
72 eqidd 2726 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) = (𝑎(+g𝑅)𝑏))
734, 5, 6znmul 21491 . . . . 5 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
743, 73syl 17 . . . 4 (𝜑 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
7574oveqdr 7447 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(.r𝑍)𝑏))
76 eqidd 2726 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)𝑏) = (𝑎(.r𝑅)𝑏))
7767, 68, 8, 68, 71, 72, 75, 76rhmpropd 20560 . 2 (𝜑 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅) = (𝑍 RingHom 𝑅))
7866, 77eleqtrd 2827 1 (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  wss 3944  {csn 4630   cuni 4909   class class class wbr 5149  cmpt 5232  ccnv 5677  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  cn 12245  0cn0 12505  cz 12591  cdvds 16234  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  0gc0g 17424   /s cqus 17490   ~QG cqg 19085  Ringcrg 20185  CRingccrg 20186   RingHom crh 20420  LIdealclidl 21114  RSpancrsp 21115  ringczring 21389  ℤRHomczrh 21442  chrcchr 21444  ℤ/nczn 21445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176  df-od 19495  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-chr 21448  df-zn 21449
This theorem is referenced by:  aks5lem1  41789  aks5lem2  41790
  Copyright terms: Public domain W3C validator