Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zndvdchrrhm Structured version   Visualization version   GIF version

Theorem zndvdchrrhm 41990
Description: Construction of a ring homomorphism from ℤ/n to 𝑅 when the characteristic of 𝑅 divides 𝑁. (Contributed by metakunt, 4-Jun-2025.)
Hypotheses
Ref Expression
zndvdchrrhm.1 (𝜑𝑅 ∈ Ring)
zndvdchrrhm.2 (𝜑𝑁 ∈ ℕ)
zndvdchrrhm.3 (𝜑 → (chr‘𝑅) ∈ ℤ)
zndvdchrrhm.4 (𝜑 → (chr‘𝑅) ∥ 𝑁)
zndvdchrrhm.5 𝑍 = (ℤ/nℤ‘𝑁)
zndvdchrrhm.6 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
Assertion
Ref Expression
zndvdchrrhm (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑅   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem zndvdchrrhm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zndvdchrrhm.6 . . . 4 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
2 zndvdchrrhm.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nnnn0d 12567 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4 eqid 2736 . . . . . . . 8 (RSpan‘ℤring) = (RSpan‘ℤring)
5 eqid 2736 . . . . . . . 8 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
6 zndvdchrrhm.5 . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
74, 5, 6znbas2 21505 . . . . . . 7 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
83, 7syl 17 . . . . . 6 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
98eqcomd 2742 . . . . 5 (𝜑 → (Base‘𝑍) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
109mpteq1d 5215 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
111, 10eqtrid 2783 . . 3 (𝜑𝐹 = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
12 eqid 2736 . . . 4 (0g𝑅) = (0g𝑅)
13 zndvdchrrhm.1 . . . . 5 (𝜑𝑅 ∈ Ring)
14 eqid 2736 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
1514zrhrhm 21477 . . . . 5 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
1613, 15syl 17 . . . 4 (𝜑 → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
17 eqid 2736 . . . 4 ((ℤRHom‘𝑅) “ {(0g𝑅)}) = ((ℤRHom‘𝑅) “ {(0g𝑅)})
18 nfcv 2899 . . . . 5 𝑦 ((ℤRHom‘𝑅) “ 𝑥)
19 nfcv 2899 . . . . 5 𝑥 ((ℤRHom‘𝑅) “ 𝑦)
20 imaeq2 6048 . . . . . 6 (𝑥 = 𝑦 → ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2120unieqd 4901 . . . . 5 (𝑥 = 𝑦 ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2218, 19, 21cbvmpt 5228 . . . 4 (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑦))
23 zringcrng 21414 . . . . 5 ring ∈ CRing
2423a1i 11 . . . 4 (𝜑 → ℤring ∈ CRing)
25 zringring 21415 . . . . . 6 ring ∈ Ring
2625a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
27 eqid 2736 . . . . . . 7 (LIdeal‘ℤring) = (LIdeal‘ℤring)
2827, 12kerlidl 21244 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
2916, 28syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
30 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ {𝑁})
31 elsng 4620 . . . . . . . . . . 11 (𝑎 ∈ {𝑁} → (𝑎 ∈ {𝑁} ↔ 𝑎 = 𝑁))
3230, 31syl5ibcom 245 . . . . . . . . . 10 ((𝜑𝑎 ∈ {𝑁}) → (𝑎 ∈ {𝑁} → 𝑎 = 𝑁))
3332imp 406 . . . . . . . . 9 (((𝜑𝑎 ∈ {𝑁}) ∧ 𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
3430, 33mpdan 687 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
35 zringbas 21419 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
36 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
3735, 36rhmf 20450 . . . . . . . . . . . . 13 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3815, 37syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3913, 38syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
4039ffnd 6712 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝑅) Fn ℤ)
412nnzd 12620 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
42 zndvdchrrhm.4 . . . . . . . . . . . 12 (𝜑 → (chr‘𝑅) ∥ 𝑁)
43 eqid 2736 . . . . . . . . . . . . . 14 (chr‘𝑅) = (chr‘𝑅)
4443, 14, 12chrdvds 21492 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4513, 41, 44syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4642, 45mpbid 232 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅))
47 fvexd 6896 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ V)
48 elsng 4620 . . . . . . . . . . . 12 (((ℤRHom‘𝑅)‘𝑁) ∈ V → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4947, 48syl 17 . . . . . . . . . . 11 (𝜑 → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
5046, 49mpbird 257 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)})
5140, 41, 50elpreimad 7054 . . . . . . . . 9 (𝜑𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5251adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5334, 52eqeltrd 2835 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5453ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)})))
5554ssrdv 3969 . . . . 5 (𝜑 → {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
564, 27rspssp 21205 . . . . 5 ((ℤring ∈ Ring ∧ ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring) ∧ {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)})) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5726, 29, 55, 56syl3anc 1373 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5824crngringd 20211 . . . . 5 (𝜑 → ℤring ∈ Ring)
5941adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ℤ)
6034, 59eqeltrd 2835 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ℤ)
6160ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ℤ))
6261ssrdv 3969 . . . . 5 (𝜑 → {𝑁} ⊆ ℤ)
634, 35, 27rspcl 21201 . . . . 5 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6458, 62, 63syl2anc 584 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6512, 16, 17, 5, 22, 24, 57, 64rhmqusnsg 21251 . . 3 (𝜑 → (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
6611, 65eqeltrd 2835 . 2 (𝜑𝐹 ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
67 eqidd 2737 . . 3 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
68 eqidd 2737 . . 3 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
694, 5, 6znadd 21506 . . . . 5 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
703, 69syl 17 . . . 4 (𝜑 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
7170oveqdr 7438 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(+g𝑍)𝑏))
72 eqidd 2737 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) = (𝑎(+g𝑅)𝑏))
734, 5, 6znmul 21507 . . . . 5 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
743, 73syl 17 . . . 4 (𝜑 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
7574oveqdr 7438 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(.r𝑍)𝑏))
76 eqidd 2737 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)𝑏) = (𝑎(.r𝑅)𝑏))
7767, 68, 8, 68, 71, 72, 75, 76rhmpropd 20574 . 2 (𝜑 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅) = (𝑍 RingHom 𝑅))
7866, 77eleqtrd 2837 1 (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  {csn 4606   cuni 4888   class class class wbr 5124  cmpt 5206  ccnv 5658  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  cn 12245  0cn0 12506  cz 12593  cdvds 16277  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458   /s cqus 17524   ~QG cqg 19110  Ringcrg 20198  CRingccrg 20199   RingHom crh 20434  LIdealclidl 21172  RSpancrsp 21173  ringczring 21412  ℤRHomczrh 21465  chrcchr 21467  ℤ/nczn 21468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-chr 21471  df-zn 21472
This theorem is referenced by:  aks5lem1  42204  aks5lem2  42205  aks5lem3a  42207
  Copyright terms: Public domain W3C validator