Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zndvdchrrhm Structured version   Visualization version   GIF version

Theorem zndvdchrrhm 41953
Description: Construction of a ring homomorphism from ℤ/n to 𝑅 when the characteristic of 𝑅 divides 𝑁. (Contributed by metakunt, 4-Jun-2025.)
Hypotheses
Ref Expression
zndvdchrrhm.1 (𝜑𝑅 ∈ Ring)
zndvdchrrhm.2 (𝜑𝑁 ∈ ℕ)
zndvdchrrhm.3 (𝜑 → (chr‘𝑅) ∈ ℤ)
zndvdchrrhm.4 (𝜑 → (chr‘𝑅) ∥ 𝑁)
zndvdchrrhm.5 𝑍 = (ℤ/nℤ‘𝑁)
zndvdchrrhm.6 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
Assertion
Ref Expression
zndvdchrrhm (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑅   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem zndvdchrrhm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zndvdchrrhm.6 . . . 4 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
2 zndvdchrrhm.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nnnn0d 12585 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4 eqid 2735 . . . . . . . 8 (RSpan‘ℤring) = (RSpan‘ℤring)
5 eqid 2735 . . . . . . . 8 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
6 zndvdchrrhm.5 . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
74, 5, 6znbas2 21573 . . . . . . 7 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
83, 7syl 17 . . . . . 6 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
98eqcomd 2741 . . . . 5 (𝜑 → (Base‘𝑍) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
109mpteq1d 5243 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
111, 10eqtrid 2787 . . 3 (𝜑𝐹 = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
12 eqid 2735 . . . 4 (0g𝑅) = (0g𝑅)
13 zndvdchrrhm.1 . . . . 5 (𝜑𝑅 ∈ Ring)
14 eqid 2735 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
1514zrhrhm 21540 . . . . 5 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
1613, 15syl 17 . . . 4 (𝜑 → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
17 eqid 2735 . . . 4 ((ℤRHom‘𝑅) “ {(0g𝑅)}) = ((ℤRHom‘𝑅) “ {(0g𝑅)})
18 nfcv 2903 . . . . 5 𝑦 ((ℤRHom‘𝑅) “ 𝑥)
19 nfcv 2903 . . . . 5 𝑥 ((ℤRHom‘𝑅) “ 𝑦)
20 imaeq2 6076 . . . . . 6 (𝑥 = 𝑦 → ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2120unieqd 4925 . . . . 5 (𝑥 = 𝑦 ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2218, 19, 21cbvmpt 5259 . . . 4 (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑦))
23 zringcrng 21477 . . . . 5 ring ∈ CRing
2423a1i 11 . . . 4 (𝜑 → ℤring ∈ CRing)
25 zringring 21478 . . . . . 6 ring ∈ Ring
2625a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
27 eqid 2735 . . . . . . 7 (LIdeal‘ℤring) = (LIdeal‘ℤring)
2827, 12kerlidl 21306 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
2916, 28syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
30 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ {𝑁})
31 elsng 4645 . . . . . . . . . . 11 (𝑎 ∈ {𝑁} → (𝑎 ∈ {𝑁} ↔ 𝑎 = 𝑁))
3230, 31syl5ibcom 245 . . . . . . . . . 10 ((𝜑𝑎 ∈ {𝑁}) → (𝑎 ∈ {𝑁} → 𝑎 = 𝑁))
3332imp 406 . . . . . . . . 9 (((𝜑𝑎 ∈ {𝑁}) ∧ 𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
3430, 33mpdan 687 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
35 zringbas 21482 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
36 eqid 2735 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
3735, 36rhmf 20502 . . . . . . . . . . . . 13 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3815, 37syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3913, 38syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
4039ffnd 6738 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝑅) Fn ℤ)
412nnzd 12638 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
42 zndvdchrrhm.4 . . . . . . . . . . . 12 (𝜑 → (chr‘𝑅) ∥ 𝑁)
43 eqid 2735 . . . . . . . . . . . . . 14 (chr‘𝑅) = (chr‘𝑅)
4443, 14, 12chrdvds 21559 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4513, 41, 44syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4642, 45mpbid 232 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅))
47 fvexd 6922 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ V)
48 elsng 4645 . . . . . . . . . . . 12 (((ℤRHom‘𝑅)‘𝑁) ∈ V → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4947, 48syl 17 . . . . . . . . . . 11 (𝜑 → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
5046, 49mpbird 257 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)})
5140, 41, 50elpreimad 7079 . . . . . . . . 9 (𝜑𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5251adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5334, 52eqeltrd 2839 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5453ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)})))
5554ssrdv 4001 . . . . 5 (𝜑 → {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
564, 27rspssp 21267 . . . . 5 ((ℤring ∈ Ring ∧ ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring) ∧ {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)})) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5726, 29, 55, 56syl3anc 1370 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5824crngringd 20264 . . . . 5 (𝜑 → ℤring ∈ Ring)
5941adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ℤ)
6034, 59eqeltrd 2839 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ℤ)
6160ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ℤ))
6261ssrdv 4001 . . . . 5 (𝜑 → {𝑁} ⊆ ℤ)
634, 35, 27rspcl 21263 . . . . 5 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6458, 62, 63syl2anc 584 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6512, 16, 17, 5, 22, 24, 57, 64rhmqusnsg 21313 . . 3 (𝜑 → (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
6611, 65eqeltrd 2839 . 2 (𝜑𝐹 ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
67 eqidd 2736 . . 3 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
68 eqidd 2736 . . 3 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
694, 5, 6znadd 21575 . . . . 5 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
703, 69syl 17 . . . 4 (𝜑 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
7170oveqdr 7459 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(+g𝑍)𝑏))
72 eqidd 2736 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) = (𝑎(+g𝑅)𝑏))
734, 5, 6znmul 21577 . . . . 5 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
743, 73syl 17 . . . 4 (𝜑 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
7574oveqdr 7459 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(.r𝑍)𝑏))
76 eqidd 2736 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)𝑏) = (𝑎(.r𝑅)𝑏))
7767, 68, 8, 68, 71, 72, 75, 76rhmpropd 20626 . 2 (𝜑 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅) = (𝑍 RingHom 𝑅))
7866, 77eleqtrd 2841 1 (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {csn 4631   cuni 4912   class class class wbr 5148  cmpt 5231  ccnv 5688  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  cn 12264  0cn0 12524  cz 12611  cdvds 16287  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486   /s cqus 17552   ~QG cqg 19153  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  LIdealclidl 21234  RSpancrsp 21235  ringczring 21475  ℤRHomczrh 21528  chrcchr 21530  ℤ/nczn 21531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-od 19561  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-chr 21534  df-zn 21535
This theorem is referenced by:  aks5lem1  42168  aks5lem2  42169  aks5lem3a  42171
  Copyright terms: Public domain W3C validator