Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zndvdchrrhm Structured version   Visualization version   GIF version

Theorem zndvdchrrhm 41955
Description: Construction of a ring homomorphism from ℤ/n to 𝑅 when the characteristic of 𝑅 divides 𝑁. (Contributed by metakunt, 4-Jun-2025.)
Hypotheses
Ref Expression
zndvdchrrhm.1 (𝜑𝑅 ∈ Ring)
zndvdchrrhm.2 (𝜑𝑁 ∈ ℕ)
zndvdchrrhm.3 (𝜑 → (chr‘𝑅) ∈ ℤ)
zndvdchrrhm.4 (𝜑 → (chr‘𝑅) ∥ 𝑁)
zndvdchrrhm.5 𝑍 = (ℤ/nℤ‘𝑁)
zndvdchrrhm.6 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
Assertion
Ref Expression
zndvdchrrhm (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑅   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem zndvdchrrhm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zndvdchrrhm.6 . . . 4 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
2 zndvdchrrhm.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nnnn0d 12445 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4 eqid 2729 . . . . . . . 8 (RSpan‘ℤring) = (RSpan‘ℤring)
5 eqid 2729 . . . . . . . 8 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
6 zndvdchrrhm.5 . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
74, 5, 6znbas2 21446 . . . . . . 7 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
83, 7syl 17 . . . . . 6 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
98eqcomd 2735 . . . . 5 (𝜑 → (Base‘𝑍) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
109mpteq1d 5182 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
111, 10eqtrid 2776 . . 3 (𝜑𝐹 = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
12 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
13 zndvdchrrhm.1 . . . . 5 (𝜑𝑅 ∈ Ring)
14 eqid 2729 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
1514zrhrhm 21418 . . . . 5 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
1613, 15syl 17 . . . 4 (𝜑 → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
17 eqid 2729 . . . 4 ((ℤRHom‘𝑅) “ {(0g𝑅)}) = ((ℤRHom‘𝑅) “ {(0g𝑅)})
18 nfcv 2891 . . . . 5 𝑦 ((ℤRHom‘𝑅) “ 𝑥)
19 nfcv 2891 . . . . 5 𝑥 ((ℤRHom‘𝑅) “ 𝑦)
20 imaeq2 6007 . . . . . 6 (𝑥 = 𝑦 → ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2120unieqd 4871 . . . . 5 (𝑥 = 𝑦 ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2218, 19, 21cbvmpt 5194 . . . 4 (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑦))
23 zringcrng 21355 . . . . 5 ring ∈ CRing
2423a1i 11 . . . 4 (𝜑 → ℤring ∈ CRing)
25 zringring 21356 . . . . . 6 ring ∈ Ring
2625a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
27 eqid 2729 . . . . . . 7 (LIdeal‘ℤring) = (LIdeal‘ℤring)
2827, 12kerlidl 21185 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
2916, 28syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
30 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ {𝑁})
31 elsng 4591 . . . . . . . . . . 11 (𝑎 ∈ {𝑁} → (𝑎 ∈ {𝑁} ↔ 𝑎 = 𝑁))
3230, 31syl5ibcom 245 . . . . . . . . . 10 ((𝜑𝑎 ∈ {𝑁}) → (𝑎 ∈ {𝑁} → 𝑎 = 𝑁))
3332imp 406 . . . . . . . . 9 (((𝜑𝑎 ∈ {𝑁}) ∧ 𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
3430, 33mpdan 687 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
35 zringbas 21360 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
36 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
3735, 36rhmf 20370 . . . . . . . . . . . . 13 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3815, 37syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3913, 38syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
4039ffnd 6653 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝑅) Fn ℤ)
412nnzd 12498 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
42 zndvdchrrhm.4 . . . . . . . . . . . 12 (𝜑 → (chr‘𝑅) ∥ 𝑁)
43 eqid 2729 . . . . . . . . . . . . . 14 (chr‘𝑅) = (chr‘𝑅)
4443, 14, 12chrdvds 21433 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4513, 41, 44syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4642, 45mpbid 232 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅))
47 fvexd 6837 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ V)
48 elsng 4591 . . . . . . . . . . . 12 (((ℤRHom‘𝑅)‘𝑁) ∈ V → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4947, 48syl 17 . . . . . . . . . . 11 (𝜑 → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
5046, 49mpbird 257 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)})
5140, 41, 50elpreimad 6993 . . . . . . . . 9 (𝜑𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5251adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5334, 52eqeltrd 2828 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5453ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)})))
5554ssrdv 3941 . . . . 5 (𝜑 → {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
564, 27rspssp 21146 . . . . 5 ((ℤring ∈ Ring ∧ ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring) ∧ {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)})) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5726, 29, 55, 56syl3anc 1373 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5824crngringd 20131 . . . . 5 (𝜑 → ℤring ∈ Ring)
5941adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ℤ)
6034, 59eqeltrd 2828 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ℤ)
6160ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ℤ))
6261ssrdv 3941 . . . . 5 (𝜑 → {𝑁} ⊆ ℤ)
634, 35, 27rspcl 21142 . . . . 5 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6458, 62, 63syl2anc 584 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6512, 16, 17, 5, 22, 24, 57, 64rhmqusnsg 21192 . . 3 (𝜑 → (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
6611, 65eqeltrd 2828 . 2 (𝜑𝐹 ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
67 eqidd 2730 . . 3 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
68 eqidd 2730 . . 3 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
694, 5, 6znadd 21447 . . . . 5 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
703, 69syl 17 . . . 4 (𝜑 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
7170oveqdr 7377 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(+g𝑍)𝑏))
72 eqidd 2730 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) = (𝑎(+g𝑅)𝑏))
734, 5, 6znmul 21448 . . . . 5 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
743, 73syl 17 . . . 4 (𝜑 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
7574oveqdr 7377 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(.r𝑍)𝑏))
76 eqidd 2730 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)𝑏) = (𝑎(.r𝑅)𝑏))
7767, 68, 8, 68, 71, 72, 75, 76rhmpropd 20494 . 2 (𝜑 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅) = (𝑍 RingHom 𝑅))
7866, 77eleqtrd 2830 1 (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  {csn 4577   cuni 4858   class class class wbr 5092  cmpt 5173  ccnv 5618  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  cn 12128  0cn0 12384  cz 12471  cdvds 16163  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343   /s cqus 17409   ~QG cqg 19001  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  LIdealclidl 21113  RSpancrsp 21114  ringczring 21353  ℤRHomczrh 21406  chrcchr 21408  ℤ/nczn 21409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-chr 21412  df-zn 21413
This theorem is referenced by:  aks5lem1  42169  aks5lem2  42170  aks5lem3a  42172
  Copyright terms: Public domain W3C validator