Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zndvdchrrhm Structured version   Visualization version   GIF version

Theorem zndvdchrrhm 41967
Description: Construction of a ring homomorphism from ℤ/n to 𝑅 when the characteristic of 𝑅 divides 𝑁. (Contributed by metakunt, 4-Jun-2025.)
Hypotheses
Ref Expression
zndvdchrrhm.1 (𝜑𝑅 ∈ Ring)
zndvdchrrhm.2 (𝜑𝑁 ∈ ℕ)
zndvdchrrhm.3 (𝜑 → (chr‘𝑅) ∈ ℤ)
zndvdchrrhm.4 (𝜑 → (chr‘𝑅) ∥ 𝑁)
zndvdchrrhm.5 𝑍 = (ℤ/nℤ‘𝑁)
zndvdchrrhm.6 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
Assertion
Ref Expression
zndvdchrrhm (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑅   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem zndvdchrrhm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zndvdchrrhm.6 . . . 4 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥))
2 zndvdchrrhm.2 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nnnn0d 12510 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
4 eqid 2730 . . . . . . . 8 (RSpan‘ℤring) = (RSpan‘ℤring)
5 eqid 2730 . . . . . . . 8 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
6 zndvdchrrhm.5 . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
74, 5, 6znbas2 21456 . . . . . . 7 (𝑁 ∈ ℕ0 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
83, 7syl 17 . . . . . 6 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘𝑍))
98eqcomd 2736 . . . . 5 (𝜑 → (Base‘𝑍) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
109mpteq1d 5200 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑍) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
111, 10eqtrid 2777 . . 3 (𝜑𝐹 = (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)))
12 eqid 2730 . . . 4 (0g𝑅) = (0g𝑅)
13 zndvdchrrhm.1 . . . . 5 (𝜑𝑅 ∈ Ring)
14 eqid 2730 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
1514zrhrhm 21428 . . . . 5 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
1613, 15syl 17 . . . 4 (𝜑 → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
17 eqid 2730 . . . 4 ((ℤRHom‘𝑅) “ {(0g𝑅)}) = ((ℤRHom‘𝑅) “ {(0g𝑅)})
18 nfcv 2892 . . . . 5 𝑦 ((ℤRHom‘𝑅) “ 𝑥)
19 nfcv 2892 . . . . 5 𝑥 ((ℤRHom‘𝑅) “ 𝑦)
20 imaeq2 6030 . . . . . 6 (𝑥 = 𝑦 → ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2120unieqd 4887 . . . . 5 (𝑥 = 𝑦 ((ℤRHom‘𝑅) “ 𝑥) = ((ℤRHom‘𝑅) “ 𝑦))
2218, 19, 21cbvmpt 5212 . . . 4 (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) = (𝑦 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑦))
23 zringcrng 21365 . . . . 5 ring ∈ CRing
2423a1i 11 . . . 4 (𝜑 → ℤring ∈ CRing)
25 zringring 21366 . . . . . 6 ring ∈ Ring
2625a1i 11 . . . . 5 (𝜑 → ℤring ∈ Ring)
27 eqid 2730 . . . . . . 7 (LIdeal‘ℤring) = (LIdeal‘ℤring)
2827, 12kerlidl 21195 . . . . . 6 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
2916, 28syl 17 . . . . 5 (𝜑 → ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring))
30 simpr 484 . . . . . . . . 9 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ {𝑁})
31 elsng 4606 . . . . . . . . . . 11 (𝑎 ∈ {𝑁} → (𝑎 ∈ {𝑁} ↔ 𝑎 = 𝑁))
3230, 31syl5ibcom 245 . . . . . . . . . 10 ((𝜑𝑎 ∈ {𝑁}) → (𝑎 ∈ {𝑁} → 𝑎 = 𝑁))
3332imp 406 . . . . . . . . 9 (((𝜑𝑎 ∈ {𝑁}) ∧ 𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
3430, 33mpdan 687 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 = 𝑁)
35 zringbas 21370 . . . . . . . . . . . . . 14 ℤ = (Base‘ℤring)
36 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
3735, 36rhmf 20401 . . . . . . . . . . . . 13 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3815, 37syl 17 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
3913, 38syl 17 . . . . . . . . . . 11 (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅))
4039ffnd 6692 . . . . . . . . . 10 (𝜑 → (ℤRHom‘𝑅) Fn ℤ)
412nnzd 12563 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
42 zndvdchrrhm.4 . . . . . . . . . . . 12 (𝜑 → (chr‘𝑅) ∥ 𝑁)
43 eqid 2730 . . . . . . . . . . . . . 14 (chr‘𝑅) = (chr‘𝑅)
4443, 14, 12chrdvds 21443 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4513, 41, 44syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((chr‘𝑅) ∥ 𝑁 ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4642, 45mpbid 232 . . . . . . . . . . 11 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅))
47 fvexd 6876 . . . . . . . . . . . 12 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ V)
48 elsng 4606 . . . . . . . . . . . 12 (((ℤRHom‘𝑅)‘𝑁) ∈ V → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
4947, 48syl 17 . . . . . . . . . . 11 (𝜑 → (((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)} ↔ ((ℤRHom‘𝑅)‘𝑁) = (0g𝑅)))
5046, 49mpbird 257 . . . . . . . . . 10 (𝜑 → ((ℤRHom‘𝑅)‘𝑁) ∈ {(0g𝑅)})
5140, 41, 50elpreimad 7034 . . . . . . . . 9 (𝜑𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5251adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5334, 52eqeltrd 2829 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5453ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ((ℤRHom‘𝑅) “ {(0g𝑅)})))
5554ssrdv 3955 . . . . 5 (𝜑 → {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
564, 27rspssp 21156 . . . . 5 ((ℤring ∈ Ring ∧ ((ℤRHom‘𝑅) “ {(0g𝑅)}) ∈ (LIdeal‘ℤring) ∧ {𝑁} ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)})) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5726, 29, 55, 56syl3anc 1373 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ⊆ ((ℤRHom‘𝑅) “ {(0g𝑅)}))
5824crngringd 20162 . . . . 5 (𝜑 → ℤring ∈ Ring)
5941adantr 480 . . . . . . . 8 ((𝜑𝑎 ∈ {𝑁}) → 𝑁 ∈ ℤ)
6034, 59eqeltrd 2829 . . . . . . 7 ((𝜑𝑎 ∈ {𝑁}) → 𝑎 ∈ ℤ)
6160ex 412 . . . . . 6 (𝜑 → (𝑎 ∈ {𝑁} → 𝑎 ∈ ℤ))
6261ssrdv 3955 . . . . 5 (𝜑 → {𝑁} ⊆ ℤ)
634, 35, 27rspcl 21152 . . . . 5 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6458, 62, 63syl2anc 584 . . . 4 (𝜑 → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
6512, 16, 17, 5, 22, 24, 57, 64rhmqusnsg 21202 . . 3 (𝜑 → (𝑥 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↦ ((ℤRHom‘𝑅) “ 𝑥)) ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
6611, 65eqeltrd 2829 . 2 (𝜑𝐹 ∈ ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅))
67 eqidd 2731 . . 3 (𝜑 → (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))
68 eqidd 2731 . . 3 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
694, 5, 6znadd 21457 . . . . 5 (𝑁 ∈ ℕ0 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
703, 69syl 17 . . . 4 (𝜑 → (+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (+g𝑍))
7170oveqdr 7418 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(+g‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(+g𝑍)𝑏))
72 eqidd 2731 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(+g𝑅)𝑏) = (𝑎(+g𝑅)𝑏))
734, 5, 6znmul 21458 . . . . 5 (𝑁 ∈ ℕ0 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
743, 73syl 17 . . . 4 (𝜑 → (.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (.r𝑍))
7574oveqdr 7418 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ∧ 𝑏 ∈ (Base‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))))) → (𝑎(.r‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))𝑏) = (𝑎(.r𝑍)𝑏))
76 eqidd 2731 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)𝑏) = (𝑎(.r𝑅)𝑏))
7767, 68, 8, 68, 71, 72, 75, 76rhmpropd 20525 . 2 (𝜑 → ((ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) RingHom 𝑅) = (𝑍 RingHom 𝑅))
7866, 77eleqtrd 2831 1 (𝜑𝐹 ∈ (𝑍 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  cn 12193  0cn0 12449  cz 12536  cdvds 16229  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   /s cqus 17475   ~QG cqg 19061  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  LIdealclidl 21123  RSpancrsp 21124  ringczring 21363  ℤRHomczrh 21416  chrcchr 21418  ℤ/nczn 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-chr 21422  df-zn 21423
This theorem is referenced by:  aks5lem1  42181  aks5lem2  42182  aks5lem3a  42184
  Copyright terms: Public domain W3C validator