Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminply Structured version   Visualization version   GIF version

Theorem cos9thpiminply 33761
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) is the minimal polynomial for 𝐴 over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
cos9thpiminply.q 𝑄 = (ℂflds ℚ)
cos9thpiminply.4 + = (+g𝑃)
cos9thpiminply.5 · = (.r𝑃)
cos9thpiminply.6 = (.g‘(mulGrp‘𝑃))
cos9thpiminply.p 𝑃 = (Poly1𝑄)
cos9thpiminply.k 𝐾 = (algSc‘𝑃)
cos9thpiminply.x 𝑋 = (var1𝑄)
cos9thpiminply.d 𝐷 = (deg1𝑄)
cos9thpiminply.f 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
cos9thpiminply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
cos9thpiminply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem cos9thpiminply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 cos9thpiminply.p . . . . 5 𝑃 = (Poly1𝑄)
3 cos9thpiminply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6825 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2752 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21265 . . . 4 ℂ = (Base‘ℂfld)
7 cnfldfld 33281 . . . . 5 fld ∈ Field
87a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
9 cndrng 21305 . . . . . 6 fld ∈ DivRing
10 qsubdrg 21326 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1210simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
13 issdrg 20673 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
16 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
17 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
18 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
19 ax-icn 11068 . . . . . . . . . . . . 13 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . 12 (⊤ → i ∈ ℂ)
21 2cnd 12206 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℂ)
22 picn 26365 . . . . . . . . . . . . . 14 π ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 (⊤ → π ∈ ℂ)
2421, 23mulcld 11135 . . . . . . . . . . . 12 (⊤ → (2 · π) ∈ ℂ)
2520, 24mulcld 11135 . . . . . . . . . . 11 (⊤ → (i · (2 · π)) ∈ ℂ)
26 3cn 12209 . . . . . . . . . . . 12 3 ∈ ℂ
2726a1i 11 . . . . . . . . . . 11 (⊤ → 3 ∈ ℂ)
28 3ne0 12234 . . . . . . . . . . . 12 3 ≠ 0
2928a1i 11 . . . . . . . . . . 11 (⊤ → 3 ≠ 0)
3025, 27, 29divcld 11900 . . . . . . . . . 10 (⊤ → ((i · (2 · π)) / 3) ∈ ℂ)
3130efcld 15990 . . . . . . . . 9 (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
3218, 31eqeltrid 2832 . . . . . . . 8 (⊤ → 𝑂 ∈ ℂ)
3327, 29reccld 11893 . . . . . . . 8 (⊤ → (1 / 3) ∈ ℂ)
3432, 33cxpcld 26615 . . . . . . 7 (⊤ → (𝑂𝑐(1 / 3)) ∈ ℂ)
3517, 34eqeltrid 2832 . . . . . 6 (⊤ → 𝑍 ∈ ℂ)
3617a1i 11 . . . . . . . 8 (⊤ → 𝑍 = (𝑂𝑐(1 / 3)))
3718a1i 11 . . . . . . . . . 10 (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3)))
3830efne0d 16004 . . . . . . . . . 10 (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
3937, 38eqnetrd 2992 . . . . . . . . 9 (⊤ → 𝑂 ≠ 0)
4032, 39, 33cxpne0d 26620 . . . . . . . 8 (⊤ → (𝑂𝑐(1 / 3)) ≠ 0)
4136, 40eqnetrd 2992 . . . . . . 7 (⊤ → 𝑍 ≠ 0)
4235, 41reccld 11893 . . . . . 6 (⊤ → (1 / 𝑍) ∈ ℂ)
4335, 42addcld 11134 . . . . 5 (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ)
4416, 43eqeltrid 2832 . . . 4 (⊤ → 𝐴 ∈ ℂ)
45 cnfld0 21299 . . . 4 0 = (0g‘ℂfld)
46 cos9thpiminply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
47 eqid 2729 . . . 4 (0g𝑃) = (0g𝑃)
48 cos9thpiminply.4 . . . . . 6 + = (+g𝑃)
49 cos9thpiminply.5 . . . . . 6 · = (.r𝑃)
50 cos9thpiminply.6 . . . . . 6 = (.g‘(mulGrp‘𝑃))
51 cos9thpiminply.k . . . . . 6 𝐾 = (algSc‘𝑃)
52 cos9thpiminply.x . . . . . 6 𝑋 = (var1𝑄)
53 cos9thpiminply.d . . . . . 6 𝐷 = (deg1𝑄)
54 cos9thpiminply.f . . . . . 6 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
5518, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 44cos9thpiminplylem6 33760 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = ((𝐴↑3) + ((-3 · 𝐴) + 1)))
5618, 17, 16cos9thpiminplylem5 33759 . . . . 5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
5755, 56eqtrdi 2780 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
583qrng0 27530 . . . . 5 0 = (0g𝑄)
59 eqid 2729 . . . . 5 (eval1𝑄) = (eval1𝑄)
60 eqid 2729 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
613qfld 33237 . . . . . 6 𝑄 ∈ Field
6261a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
633qdrng 27529 . . . . . . . . . . 11 𝑄 ∈ DivRing
6463a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
6564drngringd 20622 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
662ply1ring 22130 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
6765, 66syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
6867ringgrpd 20127 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
69 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
7069, 60mgpbas 20030 . . . . . . . 8 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
7169ringmgp 20124 . . . . . . . . 9 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7267, 71syl 17 . . . . . . . 8 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
73 3nn0 12402 . . . . . . . . 9 3 ∈ ℕ0
7473a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℕ0)
7552, 2, 60vr1cl 22100 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7665, 75syl 17 . . . . . . . 8 (⊤ → 𝑋 ∈ (Base‘𝑃))
7770, 50, 72, 74, 76mulgnn0cld 18974 . . . . . . 7 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
782ply1sca 22135 . . . . . . . . . . . 12 (𝑄 ∈ DivRing → 𝑄 = (Scalar‘𝑃))
7963, 78ax-mp 5 . . . . . . . . . . 11 𝑄 = (Scalar‘𝑃)
802ply1lmod 22134 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
8165, 80syl 17 . . . . . . . . . . 11 (⊤ → 𝑃 ∈ LMod)
823qrngbas 27528 . . . . . . . . . . 11 ℚ = (Base‘𝑄)
8351, 79, 67, 81, 82, 60asclf 21789 . . . . . . . . . 10 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
8474nn0zd 12497 . . . . . . . . . . 11 (⊤ → 3 ∈ ℤ)
85 zq 12855 . . . . . . . . . . 11 (3 ∈ ℤ → 3 ∈ ℚ)
86 qnegcl 12867 . . . . . . . . . . 11 (3 ∈ ℚ → -3 ∈ ℚ)
8784, 85, 863syl 18 . . . . . . . . . 10 (⊤ → -3 ∈ ℚ)
8883, 87ffvelcdmd 7019 . . . . . . . . 9 (⊤ → (𝐾‘-3) ∈ (Base‘𝑃))
8960, 49, 67, 88, 76ringcld 20145 . . . . . . . 8 (⊤ → ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃))
90 1zzd 12506 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
91 zq 12855 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
9290, 91syl 17 . . . . . . . . 9 (⊤ → 1 ∈ ℚ)
9383, 92ffvelcdmd 7019 . . . . . . . 8 (⊤ → (𝐾‘1) ∈ (Base‘𝑃))
9460, 48, 68, 89, 93grpcld 18826 . . . . . . 7 (⊤ → (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃))
9560, 48, 68, 77, 94grpcld 18826 . . . . . 6 (⊤ → ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) ∈ (Base‘𝑃))
9654, 95eqeltrid 2832 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
9762fldcrngd 20627 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
9859, 2, 60, 97, 82, 96evl1fvf 33499 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
9998ffnd 6653 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
100 fniniseg2 6996 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10199, 100syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10259, 82evl1fval1 22216 . . . . . . . . . . . . . . 15 (eval1𝑄) = (𝑄 evalSub1 ℚ)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (eval1𝑄) = (𝑄 evalSub1 ℚ))
104103fveq1d 6824 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((eval1𝑄)‘𝐹) = ((𝑄 evalSub1 ℚ)‘𝐹))
105104fveq1d 6824 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
106 eqid 2729 . . . . . . . . . . . . . . 15 (𝑄 evalSub1 ℚ) = (𝑄 evalSub1 ℚ)
107 cncrng 21295 . . . . . . . . . . . . . . . 16 fld ∈ CRing
108107a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℂfld ∈ CRing)
10911a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘ℂfld))
11097mptru 1547 . . . . . . . . . . . . . . . . . 18 𝑄 ∈ CRing
111110a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
112111crngringd 20131 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 𝑄 ∈ Ring)
11382subrgid 20458 . . . . . . . . . . . . . . . 16 (𝑄 ∈ Ring → ℚ ∈ (SubRing‘𝑄))
114112, 113syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘𝑄))
11596mptru 1547 . . . . . . . . . . . . . . . 16 𝐹 ∈ (Base‘𝑃)
116115a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
1173, 1, 106, 2, 3, 60, 108, 109, 114, 116ressply1evls1 33501 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑄 evalSub1 ℚ)‘𝐹) = (((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ))
118117fveq1d 6824 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥) = ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥))
119 fvres 6841 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥) = (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥))
120118, 119eqtr2d 2765 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
121 qcn 12864 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
12218, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 121cos9thpiminplylem6 33760 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
123105, 120, 1223eqtr2d 2770 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
124 id 22 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
125124cos9thpiminplylem2 33756 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) + ((-3 · 𝑥) + 1)) ≠ 0)
126123, 125eqnetrd 2992 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
127126neneqd 2930 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
128127rgen 3046 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
129128a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
130 rabeq0 4339 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
131129, 130sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
132101, 131eqtrd 2764 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
13354a1i 11 . . . . . . 7 (⊤ → 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))
134133fveq2d 6826 . . . . . 6 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
135 1lt3 12296 . . . . . . . . 9 1 < 3
136135a1i 11 . . . . . . . 8 (⊤ → 1 < 3)
137 0lt1 11642 . . . . . . . . . . . 12 0 < 1
138137a1i 11 . . . . . . . . . . 11 (⊤ → 0 < 1)
139138gt0ne0d 11684 . . . . . . . . . . . 12 (⊤ → 1 ≠ 0)
14053, 2, 82, 51, 58deg1scl 26016 . . . . . . . . . . . 12 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ ∧ 1 ≠ 0) → (𝐷‘(𝐾‘1)) = 0)
14165, 92, 139, 140syl3anc 1373 . . . . . . . . . . 11 (⊤ → (𝐷‘(𝐾‘1)) = 0)
142 drngdomn 20634 . . . . . . . . . . . . . 14 (𝑄 ∈ DivRing → 𝑄 ∈ Domn)
14363, 142mp1i 13 . . . . . . . . . . . . 13 (⊤ → 𝑄 ∈ Domn)
14427, 29negne0d 11473 . . . . . . . . . . . . . 14 (⊤ → -3 ≠ 0)
1452, 51, 58, 47, 82ply1scln0 22176 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐾‘-3) ≠ (0g𝑃))
14665, 87, 144, 145syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐾‘-3) ≠ (0g𝑃))
147107a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ CRing)
148 drngnzr 20633 . . . . . . . . . . . . . . 15 (ℂfld ∈ DivRing → ℂfld ∈ NzRing)
1499, 148mp1i 13 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ NzRing)
15011a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℚ ∈ (SubRing‘ℂfld))
15152, 47, 3, 2, 147, 149, 150vr1nz 33527 . . . . . . . . . . . . 13 (⊤ → 𝑋 ≠ (0g𝑃))
15253, 2, 60, 49, 47, 143, 88, 146, 76, 151deg1mul 26018 . . . . . . . . . . . 12 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)))
15353, 2, 82, 51, 58deg1scl 26016 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐷‘(𝐾‘-3)) = 0)
15465, 87, 144, 153syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐷‘(𝐾‘-3)) = 0)
155 drngnzr 20633 . . . . . . . . . . . . . . 15 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
15663, 155mp1i 13 . . . . . . . . . . . . . 14 (⊤ → 𝑄 ∈ NzRing)
15753, 2, 52, 156deg1vr 33526 . . . . . . . . . . . . 13 (⊤ → (𝐷𝑋) = 1)
158154, 157oveq12d 7367 . . . . . . . . . . . 12 (⊤ → ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)) = (0 + 1))
159 1cnd 11110 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℂ)
160159addlidd 11317 . . . . . . . . . . . 12 (⊤ → (0 + 1) = 1)
161152, 158, 1603eqtrd 2768 . . . . . . . . . . 11 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = 1)
162138, 141, 1613brtr4d 5124 . . . . . . . . . 10 (⊤ → (𝐷‘(𝐾‘1)) < (𝐷‘((𝐾‘-3) · 𝑋)))
1632, 53, 65, 60, 48, 89, 93, 162deg1add 26006 . . . . . . . . 9 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = (𝐷‘((𝐾‘-3) · 𝑋)))
164163, 161eqtrd 2764 . . . . . . . 8 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = 1)
16553, 2, 52, 69, 50deg1pw 26024 . . . . . . . . 9 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
166156, 74, 165syl2anc 584 . . . . . . . 8 (⊤ → (𝐷‘(3 𝑋)) = 3)
167136, 164, 1663brtr4d 5124 . . . . . . 7 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) < (𝐷‘(3 𝑋)))
1682, 53, 65, 60, 48, 77, 94, 167deg1add 26006 . . . . . 6 (⊤ → (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) = (𝐷‘(3 𝑋)))
169134, 168, 1663eqtrd 2768 . . . . 5 (⊤ → (𝐷𝐹) = 3)
17058, 59, 53, 2, 60, 62, 96, 132, 169ply1dg3rt0irred 33519 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
171 eqid 2729 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
172171, 47irredn0 20308 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
17367, 170, 172syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
174169fveq2d 6826 . . . . . 6 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
175133fveq2d 6826 . . . . . . . 8 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
176175fveq1d 6824 . . . . . . 7 (⊤ → ((coe1𝐹)‘3) = ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3))
177 cnfldadd 21267 . . . . . . . . . . 11 + = (+g‘ℂfld)
1783, 177ressplusg 17195 . . . . . . . . . 10 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
17911, 178ax-mp 5 . . . . . . . . 9 + = (+g𝑄)
1802, 60, 48, 179coe1addfv 22149 . . . . . . . 8 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
18165, 77, 94, 74, 180syl31anc 1375 . . . . . . 7 (⊤ → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
182 iftrue 4482 . . . . . . . . . 10 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1833qrng1 27531 . . . . . . . . . . 11 1 = (1r𝑄)
1842, 52, 50, 65, 74, 58, 183coe1mon 33522 . . . . . . . . . 10 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
185182, 184, 74, 159fvmptd4 6954 . . . . . . . . 9 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
1862, 60, 48, 179coe1addfv 22149 . . . . . . . . . . 11 (((𝑄 ∈ Ring ∧ ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘1) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
18765, 89, 93, 74, 186syl31anc 1375 . . . . . . . . . 10 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
1882ply1assa 22082 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ CRing → 𝑃 ∈ AssAlg)
18997, 188syl 17 . . . . . . . . . . . . . . . 16 (⊤ → 𝑃 ∈ AssAlg)
190 eqid 2729 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑃) = ( ·𝑠𝑃)
19151, 79, 82, 60, 49, 190asclmul1 21793 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ AssAlg ∧ -3 ∈ ℚ ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
192189, 87, 76, 191syl3anc 1373 . . . . . . . . . . . . . . 15 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
19370, 50mulg1 18960 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
19476, 193syl 17 . . . . . . . . . . . . . . . 16 (⊤ → (1 𝑋) = 𝑋)
195194oveq2d 7365 . . . . . . . . . . . . . . 15 (⊤ → (-3( ·𝑠𝑃)(1 𝑋)) = (-3( ·𝑠𝑃)𝑋))
196192, 195eqtr4d 2767 . . . . . . . . . . . . . 14 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)(1 𝑋)))
197196fveq2d 6826 . . . . . . . . . . . . 13 (⊤ → (coe1‘((𝐾‘-3) · 𝑋)) = (coe1‘(-3( ·𝑠𝑃)(1 𝑋))))
198197fveq1d 6824 . . . . . . . . . . . 12 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3))
199 1nn0 12400 . . . . . . . . . . . . . 14 1 ∈ ℕ0
200199a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℕ0)
201 1red 11116 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ℝ)
202201, 136ltned 11252 . . . . . . . . . . . . 13 (⊤ → 1 ≠ 3)
20358, 82, 2, 52, 190, 69, 50, 65, 87, 200, 74, 202coe1tmfv2 22159 . . . . . . . . . . . 12 (⊤ → ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3) = 0)
204198, 203eqtrd 2764 . . . . . . . . . . 11 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = 0)
2052, 51, 82, 58coe1scl 22171 . . . . . . . . . . . . 13 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ) → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
20665, 92, 205syl2anc 584 . . . . . . . . . . . 12 (⊤ → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
207 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 𝑖 = 3)
20828a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 3 ≠ 0)
209207, 208eqnetrd 2992 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑖 = 3) → 𝑖 ≠ 0)
210209neneqd 2930 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑖 = 3) → ¬ 𝑖 = 0)
211210iffalsed 4487 . . . . . . . . . . . 12 ((⊤ ∧ 𝑖 = 3) → if(𝑖 = 0, 1, 0) = 0)
212 0zd 12483 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℤ)
213206, 211, 74, 212fvmptd 6937 . . . . . . . . . . 11 (⊤ → ((coe1‘(𝐾‘1))‘3) = 0)
214204, 213oveq12d 7367 . . . . . . . . . 10 (⊤ → (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)) = (0 + 0))
215 00id 11291 . . . . . . . . . . 11 (0 + 0) = 0
216215a1i 11 . . . . . . . . . 10 (⊤ → (0 + 0) = 0)
217187, 214, 2163eqtrd 2768 . . . . . . . . 9 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = 0)
218185, 217oveq12d 7367 . . . . . . . 8 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = (1 + 0))
219159addridd 11316 . . . . . . . 8 (⊤ → (1 + 0) = 1)
220218, 219eqtrd 2764 . . . . . . 7 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = 1)
221176, 181, 2203eqtrd 2768 . . . . . 6 (⊤ → ((coe1𝐹)‘3) = 1)
222174, 221eqtrd 2764 . . . . 5 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
2233fveq2i 6825 . . . . . . 7 (Monic1p𝑄) = (Monic1p‘(ℂflds ℚ))
224223eqcomi 2738 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p𝑄)
2252, 60, 47, 53, 224, 183ismon1p 26046 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
22696, 173, 222, 225syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
2271, 5, 6, 8, 15, 44, 45, 46, 47, 57, 170, 226irredminply 33689 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
228227, 169jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
229228mptru 1547 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  {crab 3394  c0 4284  ifcif 4476  {csn 4577   class class class wbr 5092  cmpt 5173  ccnv 5618  cres 5621  cima 5622   Fn wfn 6477  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014   < clt 11149  -cneg 11348   / cdiv 11777  2c2 12183  3c3 12184  0cn0 12384  cz 12471  cq 12849  cexp 13968  expce 15968  πcpi 15973  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  Mndcmnd 18608  .gcmg 18946  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  Irredcir 20241  NzRingcnzr 20397  SubRingcsubrg 20454  Domncdomn 20577  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671  LModclmod 20763  fldccnfld 21261  AssAlgcasa 21757  algSccascl 21759  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060   evalSub1 ces1 22198  eval1ce1 22199  deg1cdg1 25957  Monic1pcmn1 26029  𝑐ccxp 26462   minPoly cminply 33672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-sgn 14994  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-pws 17353  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evls1 22200  df-evl1 22201  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037  df-ig1p 26038  df-log 26463  df-cxp 26464  df-irng 33657  df-minply 33673
This theorem is referenced by:  cos9thpinconstrlem2  33763
  Copyright terms: Public domain W3C validator