| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2735 |
. . . 4
⊢
(ℂfld evalSub1 ℚ) =
(ℂfld evalSub1 ℚ) |
| 2 | | cos9thpiminply.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑄) |
| 3 | | cos9thpiminply.q |
. . . . . 6
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 4 | 3 | fveq2i 6878 |
. . . . 5
⊢
(Poly1‘𝑄) =
(Poly1‘(ℂfld ↾s
ℚ)) |
| 5 | 2, 4 | eqtri 2758 |
. . . 4
⊢ 𝑃 =
(Poly1‘(ℂfld ↾s
ℚ)) |
| 6 | | cnfldbas 21317 |
. . . 4
⊢ ℂ =
(Base‘ℂfld) |
| 7 | | cnfldfld 33304 |
. . . . 5
⊢
ℂfld ∈ Field |
| 8 | 7 | a1i 11 |
. . . 4
⊢ (⊤
→ ℂfld ∈ Field) |
| 9 | | cndrng 21359 |
. . . . . 6
⊢
ℂfld ∈ DivRing |
| 10 | | qsubdrg 21385 |
. . . . . . 7
⊢ (ℚ
∈ (SubRing‘ℂfld) ∧ (ℂfld
↾s ℚ) ∈ DivRing) |
| 11 | 10 | simpli 483 |
. . . . . 6
⊢ ℚ
∈ (SubRing‘ℂfld) |
| 12 | 10 | simpri 485 |
. . . . . 6
⊢
(ℂfld ↾s ℚ) ∈
DivRing |
| 13 | | issdrg 20746 |
. . . . . 6
⊢ (ℚ
∈ (SubDRing‘ℂfld) ↔ (ℂfld
∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧
(ℂfld ↾s ℚ) ∈
DivRing)) |
| 14 | 9, 11, 12, 13 | mpbir3an 1342 |
. . . . 5
⊢ ℚ
∈ (SubDRing‘ℂfld) |
| 15 | 14 | a1i 11 |
. . . 4
⊢ (⊤
→ ℚ ∈ (SubDRing‘ℂfld)) |
| 16 | | cos9thpiminplylem5.3 |
. . . . 5
⊢ 𝐴 = (𝑍 + (1 / 𝑍)) |
| 17 | | cos9thpiminplylem4.2 |
. . . . . . 7
⊢ 𝑍 = (𝑂↑𝑐(1 /
3)) |
| 18 | | cos9thpiminplylem3.1 |
. . . . . . . . 9
⊢ 𝑂 = (exp‘((i · (2
· π)) / 3)) |
| 19 | | ax-icn 11186 |
. . . . . . . . . . . . 13
⊢ i ∈
ℂ |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ i ∈ ℂ) |
| 21 | | 2cnd 12316 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 2 ∈ ℂ) |
| 22 | | picn 26417 |
. . . . . . . . . . . . . 14
⊢ π
∈ ℂ |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ π ∈ ℂ) |
| 24 | 21, 23 | mulcld 11253 |
. . . . . . . . . . . 12
⊢ (⊤
→ (2 · π) ∈ ℂ) |
| 25 | 20, 24 | mulcld 11253 |
. . . . . . . . . . 11
⊢ (⊤
→ (i · (2 · π)) ∈ ℂ) |
| 26 | | 3cn 12319 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℂ |
| 27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 3 ∈ ℂ) |
| 28 | | 3ne0 12344 |
. . . . . . . . . . . 12
⊢ 3 ≠
0 |
| 29 | 28 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 3 ≠ 0) |
| 30 | 25, 27, 29 | divcld 12015 |
. . . . . . . . . 10
⊢ (⊤
→ ((i · (2 · π)) / 3) ∈ ℂ) |
| 31 | 30 | efcld 16097 |
. . . . . . . . 9
⊢ (⊤
→ (exp‘((i · (2 · π)) / 3)) ∈
ℂ) |
| 32 | 18, 31 | eqeltrid 2838 |
. . . . . . . 8
⊢ (⊤
→ 𝑂 ∈
ℂ) |
| 33 | 27, 29 | reccld 12008 |
. . . . . . . 8
⊢ (⊤
→ (1 / 3) ∈ ℂ) |
| 34 | 32, 33 | cxpcld 26667 |
. . . . . . 7
⊢ (⊤
→ (𝑂↑𝑐(1 / 3)) ∈
ℂ) |
| 35 | 17, 34 | eqeltrid 2838 |
. . . . . 6
⊢ (⊤
→ 𝑍 ∈
ℂ) |
| 36 | 17 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 𝑍 = (𝑂↑𝑐(1 /
3))) |
| 37 | 18 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 𝑂 = (exp‘((i
· (2 · π)) / 3))) |
| 38 | 30 | efne0d 16111 |
. . . . . . . . . 10
⊢ (⊤
→ (exp‘((i · (2 · π)) / 3)) ≠
0) |
| 39 | 37, 38 | eqnetrd 2999 |
. . . . . . . . 9
⊢ (⊤
→ 𝑂 ≠
0) |
| 40 | 32, 39, 33 | cxpne0d 26672 |
. . . . . . . 8
⊢ (⊤
→ (𝑂↑𝑐(1 / 3)) ≠
0) |
| 41 | 36, 40 | eqnetrd 2999 |
. . . . . . 7
⊢ (⊤
→ 𝑍 ≠
0) |
| 42 | 35, 41 | reccld 12008 |
. . . . . 6
⊢ (⊤
→ (1 / 𝑍) ∈
ℂ) |
| 43 | 35, 42 | addcld 11252 |
. . . . 5
⊢ (⊤
→ (𝑍 + (1 / 𝑍)) ∈
ℂ) |
| 44 | 16, 43 | eqeltrid 2838 |
. . . 4
⊢ (⊤
→ 𝐴 ∈
ℂ) |
| 45 | | cnfld0 21353 |
. . . 4
⊢ 0 =
(0g‘ℂfld) |
| 46 | | cos9thpiminply.m |
. . . 4
⊢ 𝑀 = (ℂfld
minPoly ℚ) |
| 47 | | eqid 2735 |
. . . 4
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 48 | | cos9thpiminply.4 |
. . . . . 6
⊢ + =
(+g‘𝑃) |
| 49 | | cos9thpiminply.5 |
. . . . . 6
⊢ · =
(.r‘𝑃) |
| 50 | | cos9thpiminply.6 |
. . . . . 6
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
| 51 | | cos9thpiminply.k |
. . . . . 6
⊢ 𝐾 = (algSc‘𝑃) |
| 52 | | cos9thpiminply.x |
. . . . . 6
⊢ 𝑋 = (var1‘𝑄) |
| 53 | | cos9thpiminply.d |
. . . . . 6
⊢ 𝐷 = (deg1‘𝑄) |
| 54 | | cos9thpiminply.f |
. . . . . 6
⊢ 𝐹 = ((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) |
| 55 | 18, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 44 | cos9thpiminplylem6 33767 |
. . . . 5
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = ((𝐴↑3) + ((-3 · 𝐴) + 1))) |
| 56 | 18, 17, 16 | cos9thpiminplylem5 33766 |
. . . . 5
⊢ ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0 |
| 57 | 55, 56 | eqtrdi 2786 |
. . . 4
⊢ (⊤
→ (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0) |
| 58 | 3 | qrng0 27582 |
. . . . 5
⊢ 0 =
(0g‘𝑄) |
| 59 | | eqid 2735 |
. . . . 5
⊢
(eval1‘𝑄) = (eval1‘𝑄) |
| 60 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 61 | 3 | qfld 33237 |
. . . . . 6
⊢ 𝑄 ∈ Field |
| 62 | 61 | a1i 11 |
. . . . 5
⊢ (⊤
→ 𝑄 ∈
Field) |
| 63 | 3 | qdrng 27581 |
. . . . . . . . . . 11
⊢ 𝑄 ∈ DivRing |
| 64 | 63 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ 𝑄 ∈
DivRing) |
| 65 | 64 | drngringd 20695 |
. . . . . . . . 9
⊢ (⊤
→ 𝑄 ∈
Ring) |
| 66 | 2 | ply1ring 22181 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring → 𝑃 ∈ Ring) |
| 67 | 65, 66 | syl 17 |
. . . . . . . 8
⊢ (⊤
→ 𝑃 ∈
Ring) |
| 68 | 67 | ringgrpd 20200 |
. . . . . . 7
⊢ (⊤
→ 𝑃 ∈
Grp) |
| 69 | | eqid 2735 |
. . . . . . . . 9
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
| 70 | 69, 60 | mgpbas 20103 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
| 71 | 69 | ringmgp 20197 |
. . . . . . . . 9
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
| 72 | 67, 71 | syl 17 |
. . . . . . . 8
⊢ (⊤
→ (mulGrp‘𝑃)
∈ Mnd) |
| 73 | | 3nn0 12517 |
. . . . . . . . 9
⊢ 3 ∈
ℕ0 |
| 74 | 73 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 3 ∈ ℕ0) |
| 75 | 52, 2, 60 | vr1cl 22151 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 76 | 65, 75 | syl 17 |
. . . . . . . 8
⊢ (⊤
→ 𝑋 ∈
(Base‘𝑃)) |
| 77 | 70, 50, 72, 74, 76 | mulgnn0cld 19076 |
. . . . . . 7
⊢ (⊤
→ (3 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 78 | 2 | ply1sca 22186 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ DivRing → 𝑄 = (Scalar‘𝑃)) |
| 79 | 63, 78 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝑄 = (Scalar‘𝑃) |
| 80 | 2 | ply1lmod 22185 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ Ring → 𝑃 ∈ LMod) |
| 81 | 65, 80 | syl 17 |
. . . . . . . . . . 11
⊢ (⊤
→ 𝑃 ∈
LMod) |
| 82 | 3 | qrngbas 27580 |
. . . . . . . . . . 11
⊢ ℚ =
(Base‘𝑄) |
| 83 | 51, 79, 67, 81, 82, 60 | asclf 21840 |
. . . . . . . . . 10
⊢ (⊤
→ 𝐾:ℚ⟶(Base‘𝑃)) |
| 84 | 74 | nn0zd 12612 |
. . . . . . . . . . 11
⊢ (⊤
→ 3 ∈ ℤ) |
| 85 | | zq 12968 |
. . . . . . . . . . 11
⊢ (3 ∈
ℤ → 3 ∈ ℚ) |
| 86 | | qnegcl 12980 |
. . . . . . . . . . 11
⊢ (3 ∈
ℚ → -3 ∈ ℚ) |
| 87 | 84, 85, 86 | 3syl 18 |
. . . . . . . . . 10
⊢ (⊤
→ -3 ∈ ℚ) |
| 88 | 83, 87 | ffvelcdmd 7074 |
. . . . . . . . 9
⊢ (⊤
→ (𝐾‘-3) ∈
(Base‘𝑃)) |
| 89 | 60, 49, 67, 88, 76 | ringcld 20218 |
. . . . . . . 8
⊢ (⊤
→ ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃)) |
| 90 | | 1zzd 12621 |
. . . . . . . . . 10
⊢ (⊤
→ 1 ∈ ℤ) |
| 91 | | zq 12968 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → 1 ∈ ℚ) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . 9
⊢ (⊤
→ 1 ∈ ℚ) |
| 93 | 83, 92 | ffvelcdmd 7074 |
. . . . . . . 8
⊢ (⊤
→ (𝐾‘1) ∈
(Base‘𝑃)) |
| 94 | 60, 48, 68, 89, 93 | grpcld 18928 |
. . . . . . 7
⊢ (⊤
→ (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) |
| 95 | 60, 48, 68, 77, 94 | grpcld 18928 |
. . . . . 6
⊢ (⊤
→ ((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) ∈ (Base‘𝑃)) |
| 96 | 54, 95 | eqeltrid 2838 |
. . . . 5
⊢ (⊤
→ 𝐹 ∈
(Base‘𝑃)) |
| 97 | 62 | fldcrngd 20700 |
. . . . . . . . 9
⊢ (⊤
→ 𝑄 ∈
CRing) |
| 98 | 59, 2, 60, 97, 82, 96 | evl1fvf 33522 |
. . . . . . . 8
⊢ (⊤
→ ((eval1‘𝑄)‘𝐹):ℚ⟶ℚ) |
| 99 | 98 | ffnd 6706 |
. . . . . . 7
⊢ (⊤
→ ((eval1‘𝑄)‘𝐹) Fn ℚ) |
| 100 | | fniniseg2 7051 |
. . . . . . 7
⊢
(((eval1‘𝑄)‘𝐹) Fn ℚ → (◡((eval1‘𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0}) |
| 101 | 99, 100 | syl 17 |
. . . . . 6
⊢ (⊤
→ (◡((eval1‘𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0}) |
| 102 | 59, 82 | evl1fval1 22267 |
. . . . . . . . . . . . . . 15
⊢
(eval1‘𝑄) = (𝑄 evalSub1
ℚ) |
| 103 | 102 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ →
(eval1‘𝑄)
= (𝑄 evalSub1
ℚ)) |
| 104 | 103 | fveq1d 6877 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ →
((eval1‘𝑄)‘𝐹) = ((𝑄 evalSub1 ℚ)‘𝐹)) |
| 105 | 104 | fveq1d 6877 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ →
(((eval1‘𝑄)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥)) |
| 106 | | eqid 2735 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 evalSub1 ℚ) =
(𝑄 evalSub1
ℚ) |
| 107 | | cncrng 21349 |
. . . . . . . . . . . . . . . 16
⊢
ℂfld ∈ CRing |
| 108 | 107 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ →
ℂfld ∈ CRing) |
| 109 | 11 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → ℚ
∈ (SubRing‘ℂfld)) |
| 110 | 97 | mptru 1547 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑄 ∈ CRing |
| 111 | 110 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℚ → 𝑄 ∈ CRing) |
| 112 | 111 | crngringd 20204 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℚ → 𝑄 ∈ Ring) |
| 113 | 82 | subrgid 20531 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ Ring → ℚ
∈ (SubRing‘𝑄)) |
| 114 | 112, 113 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → ℚ
∈ (SubRing‘𝑄)) |
| 115 | 96 | mptru 1547 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 ∈ (Base‘𝑃) |
| 116 | 115 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃)) |
| 117 | 3, 1, 106, 2, 3, 60, 108, 109, 114, 116 | ressply1evls1 33524 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → ((𝑄 evalSub1
ℚ)‘𝐹) =
(((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)) |
| 118 | 117 | fveq1d 6877 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → (((𝑄 evalSub1
ℚ)‘𝐹)‘𝑥) = ((((ℂfld
evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥)) |
| 119 | | fvres 6894 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ →
((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥) = (((ℂfld
evalSub1 ℚ)‘𝐹)‘𝑥)) |
| 120 | 118, 119 | eqtr2d 2771 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ →
(((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥)) |
| 121 | | qcn 12977 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℂ) |
| 122 | 18, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 121 | cos9thpiminplylem6 33767 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ →
(((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1))) |
| 123 | 105, 120,
122 | 3eqtr2d 2776 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℚ →
(((eval1‘𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1))) |
| 124 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℚ) |
| 125 | 124 | cos9thpiminplylem2 33763 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℚ → ((𝑥↑3) + ((-3 · 𝑥) + 1)) ≠ 0) |
| 126 | 123, 125 | eqnetrd 2999 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℚ →
(((eval1‘𝑄)‘𝐹)‘𝑥) ≠ 0) |
| 127 | 126 | neneqd 2937 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℚ → ¬
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0) |
| 128 | 127 | rgen 3053 |
. . . . . . . 8
⊢
∀𝑥 ∈
ℚ ¬ (((eval1‘𝑄)‘𝐹)‘𝑥) = 0 |
| 129 | 128 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ∀𝑥 ∈
ℚ ¬ (((eval1‘𝑄)‘𝐹)‘𝑥) = 0) |
| 130 | | rabeq0 4363 |
. . . . . . 7
⊢ ({𝑥 ∈ ℚ ∣
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬
(((eval1‘𝑄)‘𝐹)‘𝑥) = 0) |
| 131 | 129, 130 | sylibr 234 |
. . . . . 6
⊢ (⊤
→ {𝑥 ∈ ℚ
∣ (((eval1‘𝑄)‘𝐹)‘𝑥) = 0} = ∅) |
| 132 | 101, 131 | eqtrd 2770 |
. . . . 5
⊢ (⊤
→ (◡((eval1‘𝑄)‘𝐹) “ {0}) = ∅) |
| 133 | 54 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 𝐹 = ((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) |
| 134 | 133 | fveq2d 6879 |
. . . . . 6
⊢ (⊤
→ (𝐷‘𝐹) = (𝐷‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))) |
| 135 | | 1lt3 12411 |
. . . . . . . . 9
⊢ 1 <
3 |
| 136 | 135 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 1 < 3) |
| 137 | | 0lt1 11757 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
| 138 | 137 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 0 < 1) |
| 139 | 138 | gt0ne0d 11799 |
. . . . . . . . . . . 12
⊢ (⊤
→ 1 ≠ 0) |
| 140 | 53, 2, 82, 51, 58 | deg1scl 26068 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ Ring ∧ 1 ∈
ℚ ∧ 1 ≠ 0) → (𝐷‘(𝐾‘1)) = 0) |
| 141 | 65, 92, 139, 140 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝐷‘(𝐾‘1)) = 0) |
| 142 | | drngdomn 20707 |
. . . . . . . . . . . . . 14
⊢ (𝑄 ∈ DivRing → 𝑄 ∈ Domn) |
| 143 | 63, 142 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 𝑄 ∈
Domn) |
| 144 | 27, 29 | negne0d 11590 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ -3 ≠ 0) |
| 145 | 2, 51, 58, 47, 82 | ply1scln0 22227 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ Ring ∧ -3 ∈
ℚ ∧ -3 ≠ 0) → (𝐾‘-3) ≠ (0g‘𝑃)) |
| 146 | 65, 87, 144, 145 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝐾‘-3) ≠
(0g‘𝑃)) |
| 147 | 107 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ℂfld ∈ CRing) |
| 148 | | drngnzr 20706 |
. . . . . . . . . . . . . . 15
⊢
(ℂfld ∈ DivRing → ℂfld
∈ NzRing) |
| 149 | 9, 148 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ℂfld ∈ NzRing) |
| 150 | 11 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ℚ ∈ (SubRing‘ℂfld)) |
| 151 | 52, 47, 3, 2, 147, 149, 150 | vr1nz 33549 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 𝑋 ≠
(0g‘𝑃)) |
| 152 | 53, 2, 60, 49, 47, 143, 88, 146, 76, 151 | deg1mul 26070 |
. . . . . . . . . . . 12
⊢ (⊤
→ (𝐷‘((𝐾‘-3) · 𝑋)) = ((𝐷‘(𝐾‘-3)) + (𝐷‘𝑋))) |
| 153 | 53, 2, 82, 51, 58 | deg1scl 26068 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ Ring ∧ -3 ∈
ℚ ∧ -3 ≠ 0) → (𝐷‘(𝐾‘-3)) = 0) |
| 154 | 65, 87, 144, 153 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝐷‘(𝐾‘-3)) =
0) |
| 155 | | drngnzr 20706 |
. . . . . . . . . . . . . . 15
⊢ (𝑄 ∈ DivRing → 𝑄 ∈ NzRing) |
| 156 | 63, 155 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 𝑄 ∈
NzRing) |
| 157 | 53, 2, 52, 156 | deg1vr 33548 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (𝐷‘𝑋) = 1) |
| 158 | 154, 157 | oveq12d 7421 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((𝐷‘(𝐾‘-3)) + (𝐷‘𝑋)) = (0 + 1)) |
| 159 | | 1cnd 11228 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 1 ∈ ℂ) |
| 160 | 159 | addlidd 11434 |
. . . . . . . . . . . 12
⊢ (⊤
→ (0 + 1) = 1) |
| 161 | 152, 158,
160 | 3eqtrd 2774 |
. . . . . . . . . . 11
⊢ (⊤
→ (𝐷‘((𝐾‘-3) · 𝑋)) = 1) |
| 162 | 138, 141,
161 | 3brtr4d 5151 |
. . . . . . . . . 10
⊢ (⊤
→ (𝐷‘(𝐾‘1)) < (𝐷‘((𝐾‘-3) · 𝑋))) |
| 163 | 2, 53, 65, 60, 48, 89, 93, 162 | deg1add 26058 |
. . . . . . . . 9
⊢ (⊤
→ (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = (𝐷‘((𝐾‘-3) · 𝑋))) |
| 164 | 163, 161 | eqtrd 2770 |
. . . . . . . 8
⊢ (⊤
→ (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = 1) |
| 165 | 53, 2, 52, 69, 50 | deg1pw 26076 |
. . . . . . . . 9
⊢ ((𝑄 ∈ NzRing ∧ 3 ∈
ℕ0) → (𝐷‘(3 ↑ 𝑋)) = 3) |
| 166 | 156, 74, 165 | syl2anc 584 |
. . . . . . . 8
⊢ (⊤
→ (𝐷‘(3 ↑ 𝑋)) = 3) |
| 167 | 136, 164,
166 | 3brtr4d 5151 |
. . . . . . 7
⊢ (⊤
→ (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) < (𝐷‘(3 ↑ 𝑋))) |
| 168 | 2, 53, 65, 60, 48, 77, 94, 167 | deg1add 26058 |
. . . . . 6
⊢ (⊤
→ (𝐷‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) = (𝐷‘(3 ↑ 𝑋))) |
| 169 | 134, 168,
166 | 3eqtrd 2774 |
. . . . 5
⊢ (⊤
→ (𝐷‘𝐹) = 3) |
| 170 | 58, 59, 53, 2, 60, 62, 96, 132, 169 | ply1dg3rt0irred 33541 |
. . . 4
⊢ (⊤
→ 𝐹 ∈
(Irred‘𝑃)) |
| 171 | | eqid 2735 |
. . . . . . 7
⊢
(Irred‘𝑃) =
(Irred‘𝑃) |
| 172 | 171, 47 | irredn0 20381 |
. . . . . 6
⊢ ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g‘𝑃)) |
| 173 | 67, 170, 172 | syl2anc 584 |
. . . . 5
⊢ (⊤
→ 𝐹 ≠
(0g‘𝑃)) |
| 174 | 169 | fveq2d 6879 |
. . . . . 6
⊢ (⊤
→ ((coe1‘𝐹)‘(𝐷‘𝐹)) = ((coe1‘𝐹)‘3)) |
| 175 | 133 | fveq2d 6879 |
. . . . . . . 8
⊢ (⊤
→ (coe1‘𝐹) = (coe1‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))) |
| 176 | 175 | fveq1d 6877 |
. . . . . . 7
⊢ (⊤
→ ((coe1‘𝐹)‘3) = ((coe1‘((3
↑
𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3)) |
| 177 | | cnfldadd 21319 |
. . . . . . . . . . 11
⊢ + =
(+g‘ℂfld) |
| 178 | 3, 177 | ressplusg 17303 |
. . . . . . . . . 10
⊢ (ℚ
∈ (SubRing‘ℂfld) → + =
(+g‘𝑄)) |
| 179 | 11, 178 | ax-mp 5 |
. . . . . . . . 9
⊢ + =
(+g‘𝑄) |
| 180 | 2, 60, 48, 179 | coe1addfv 22200 |
. . . . . . . 8
⊢ (((𝑄 ∈ Ring ∧ (3 ↑ 𝑋) ∈ (Base‘𝑃) ∧ (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) ∧ 3 ∈
ℕ0) → ((coe1‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) =
(((coe1‘(3 ↑ 𝑋))‘3) +
((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3))) |
| 181 | 65, 77, 94, 74, 180 | syl31anc 1375 |
. . . . . . 7
⊢ (⊤
→ ((coe1‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) =
(((coe1‘(3 ↑ 𝑋))‘3) +
((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3))) |
| 182 | | iftrue 4506 |
. . . . . . . . . 10
⊢ (𝑖 = 3 → if(𝑖 = 3, 1, 0) =
1) |
| 183 | 3 | qrng1 27583 |
. . . . . . . . . . 11
⊢ 1 =
(1r‘𝑄) |
| 184 | 2, 52, 50, 65, 74, 58, 183 | coe1mon 33544 |
. . . . . . . . . 10
⊢ (⊤
→ (coe1‘(3 ↑ 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0))) |
| 185 | 182, 184,
74, 159 | fvmptd4 7009 |
. . . . . . . . 9
⊢ (⊤
→ ((coe1‘(3 ↑ 𝑋))‘3) = 1) |
| 186 | 2, 60, 48, 179 | coe1addfv 22200 |
. . . . . . . . . . 11
⊢ (((𝑄 ∈ Ring ∧ ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘1) ∈ (Base‘𝑃)) ∧ 3 ∈
ℕ0) → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) =
(((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3))) |
| 187 | 65, 89, 93, 74, 186 | syl31anc 1375 |
. . . . . . . . . 10
⊢ (⊤
→ ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) =
(((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3))) |
| 188 | 2 | ply1assa 22133 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄 ∈ CRing → 𝑃 ∈ AssAlg) |
| 189 | 97, 188 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ 𝑃 ∈
AssAlg) |
| 190 | | eqid 2735 |
. . . . . . . . . . . . . . . . 17
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
| 191 | 51, 79, 82, 60, 49, 190 | asclmul1 21844 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ AssAlg ∧ -3 ∈
ℚ ∧ 𝑋 ∈
(Base‘𝑃)) →
((𝐾‘-3) · 𝑋) = (-3(
·𝑠 ‘𝑃)𝑋)) |
| 192 | 189, 87, 76, 191 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ ((𝐾‘-3) · 𝑋) = (-3(
·𝑠 ‘𝑃)𝑋)) |
| 193 | 70, 50 | mulg1 19062 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ (Base‘𝑃) → (1 ↑ 𝑋) = 𝑋) |
| 194 | 76, 193 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (⊤
→ (1 ↑ 𝑋) = 𝑋) |
| 195 | 194 | oveq2d 7419 |
. . . . . . . . . . . . . . 15
⊢ (⊤
→ (-3( ·𝑠 ‘𝑃)(1 ↑ 𝑋)) = (-3(
·𝑠 ‘𝑃)𝑋)) |
| 196 | 192, 195 | eqtr4d 2773 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ ((𝐾‘-3) · 𝑋) = (-3(
·𝑠 ‘𝑃)(1 ↑ 𝑋))) |
| 197 | 196 | fveq2d 6879 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (coe1‘((𝐾‘-3) · 𝑋)) = (coe1‘(-3(
·𝑠 ‘𝑃)(1 ↑ 𝑋)))) |
| 198 | 197 | fveq1d 6877 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((coe1‘((𝐾‘-3) · 𝑋))‘3) = ((coe1‘(-3(
·𝑠 ‘𝑃)(1 ↑ 𝑋)))‘3)) |
| 199 | | 1nn0 12515 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ0 |
| 200 | 199 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 1 ∈ ℕ0) |
| 201 | | 1red 11234 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 1 ∈ ℝ) |
| 202 | 201, 136 | ltned 11369 |
. . . . . . . . . . . . 13
⊢ (⊤
→ 1 ≠ 3) |
| 203 | 58, 82, 2, 52, 190, 69, 50, 65, 87, 200, 74, 202 | coe1tmfv2 22210 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((coe1‘(-3( ·𝑠
‘𝑃)(1 ↑ 𝑋)))‘3) =
0) |
| 204 | 198, 203 | eqtrd 2770 |
. . . . . . . . . . 11
⊢ (⊤
→ ((coe1‘((𝐾‘-3) · 𝑋))‘3) = 0) |
| 205 | 2, 51, 82, 58 | coe1scl 22222 |
. . . . . . . . . . . . 13
⊢ ((𝑄 ∈ Ring ∧ 1 ∈
ℚ) → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0))) |
| 206 | 65, 92, 205 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (⊤
→ (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0))) |
| 207 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑖 =
3) → 𝑖 =
3) |
| 208 | 28 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑖 =
3) → 3 ≠ 0) |
| 209 | 207, 208 | eqnetrd 2999 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑖 =
3) → 𝑖 ≠
0) |
| 210 | 209 | neneqd 2937 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑖 =
3) → ¬ 𝑖 =
0) |
| 211 | 210 | iffalsed 4511 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑖 =
3) → if(𝑖 = 0, 1, 0) =
0) |
| 212 | | 0zd 12598 |
. . . . . . . . . . . 12
⊢ (⊤
→ 0 ∈ ℤ) |
| 213 | 206, 211,
74, 212 | fvmptd 6992 |
. . . . . . . . . . 11
⊢ (⊤
→ ((coe1‘(𝐾‘1))‘3) = 0) |
| 214 | 204, 213 | oveq12d 7421 |
. . . . . . . . . 10
⊢ (⊤
→ (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)) = (0 +
0)) |
| 215 | | 00id 11408 |
. . . . . . . . . . 11
⊢ (0 + 0) =
0 |
| 216 | 215 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (0 + 0) = 0) |
| 217 | 187, 214,
216 | 3eqtrd 2774 |
. . . . . . . . 9
⊢ (⊤
→ ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = 0) |
| 218 | 185, 217 | oveq12d 7421 |
. . . . . . . 8
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘3) +
((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = (1 +
0)) |
| 219 | 159 | addridd 11433 |
. . . . . . . 8
⊢ (⊤
→ (1 + 0) = 1) |
| 220 | 218, 219 | eqtrd 2770 |
. . . . . . 7
⊢ (⊤
→ (((coe1‘(3 ↑ 𝑋))‘3) +
((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = 1) |
| 221 | 176, 181,
220 | 3eqtrd 2774 |
. . . . . 6
⊢ (⊤
→ ((coe1‘𝐹)‘3) = 1) |
| 222 | 174, 221 | eqtrd 2770 |
. . . . 5
⊢ (⊤
→ ((coe1‘𝐹)‘(𝐷‘𝐹)) = 1) |
| 223 | 3 | fveq2i 6878 |
. . . . . . 7
⊢
(Monic1p‘𝑄) =
(Monic1p‘(ℂfld ↾s
ℚ)) |
| 224 | 223 | eqcomi 2744 |
. . . . . 6
⊢
(Monic1p‘(ℂfld ↾s
ℚ)) = (Monic1p‘𝑄) |
| 225 | 2, 60, 47, 53, 224, 183 | ismon1p 26098 |
. . . . 5
⊢ (𝐹 ∈
(Monic1p‘(ℂfld ↾s ℚ))
↔ (𝐹 ∈
(Base‘𝑃) ∧ 𝐹 ≠ (0g‘𝑃) ∧
((coe1‘𝐹)‘(𝐷‘𝐹)) = 1)) |
| 226 | 96, 173, 222, 225 | syl3anbrc 1344 |
. . . 4
⊢ (⊤
→ 𝐹 ∈
(Monic1p‘(ℂfld ↾s
ℚ))) |
| 227 | 1, 5, 6, 8, 15, 44, 45, 46, 47, 57, 170, 226 | irredminply 33696 |
. . 3
⊢ (⊤
→ 𝐹 = (𝑀‘𝐴)) |
| 228 | 227, 169 | jca 511 |
. 2
⊢ (⊤
→ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3)) |
| 229 | 228 | mptru 1547 |
1
⊢ (𝐹 = (𝑀‘𝐴) ∧ (𝐷‘𝐹) = 3) |