Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminply Structured version   Visualization version   GIF version

Theorem cos9thpiminply 33801
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) is the minimal polynomial for 𝐴 over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
cos9thpiminply.q 𝑄 = (ℂflds ℚ)
cos9thpiminply.4 + = (+g𝑃)
cos9thpiminply.5 · = (.r𝑃)
cos9thpiminply.6 = (.g‘(mulGrp‘𝑃))
cos9thpiminply.p 𝑃 = (Poly1𝑄)
cos9thpiminply.k 𝐾 = (algSc‘𝑃)
cos9thpiminply.x 𝑋 = (var1𝑄)
cos9thpiminply.d 𝐷 = (deg1𝑄)
cos9thpiminply.f 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
cos9thpiminply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
cos9thpiminply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem cos9thpiminply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 cos9thpiminply.p . . . . 5 𝑃 = (Poly1𝑄)
3 cos9thpiminply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6825 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2754 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21295 . . . 4 ℂ = (Base‘ℂfld)
7 cnfldfld 33307 . . . . 5 fld ∈ Field
87a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
9 cndrng 21335 . . . . . 6 fld ∈ DivRing
10 qsubdrg 21356 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1210simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
13 issdrg 20703 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
16 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
17 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
18 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
19 ax-icn 11065 . . . . . . . . . . . . 13 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . 12 (⊤ → i ∈ ℂ)
21 2cnd 12203 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℂ)
22 picn 26394 . . . . . . . . . . . . . 14 π ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 (⊤ → π ∈ ℂ)
2421, 23mulcld 11132 . . . . . . . . . . . 12 (⊤ → (2 · π) ∈ ℂ)
2520, 24mulcld 11132 . . . . . . . . . . 11 (⊤ → (i · (2 · π)) ∈ ℂ)
26 3cn 12206 . . . . . . . . . . . 12 3 ∈ ℂ
2726a1i 11 . . . . . . . . . . 11 (⊤ → 3 ∈ ℂ)
28 3ne0 12231 . . . . . . . . . . . 12 3 ≠ 0
2928a1i 11 . . . . . . . . . . 11 (⊤ → 3 ≠ 0)
3025, 27, 29divcld 11897 . . . . . . . . . 10 (⊤ → ((i · (2 · π)) / 3) ∈ ℂ)
3130efcld 15990 . . . . . . . . 9 (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
3218, 31eqeltrid 2835 . . . . . . . 8 (⊤ → 𝑂 ∈ ℂ)
3327, 29reccld 11890 . . . . . . . 8 (⊤ → (1 / 3) ∈ ℂ)
3432, 33cxpcld 26644 . . . . . . 7 (⊤ → (𝑂𝑐(1 / 3)) ∈ ℂ)
3517, 34eqeltrid 2835 . . . . . 6 (⊤ → 𝑍 ∈ ℂ)
3617a1i 11 . . . . . . . 8 (⊤ → 𝑍 = (𝑂𝑐(1 / 3)))
3718a1i 11 . . . . . . . . . 10 (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3)))
3830efne0d 16004 . . . . . . . . . 10 (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
3937, 38eqnetrd 2995 . . . . . . . . 9 (⊤ → 𝑂 ≠ 0)
4032, 39, 33cxpne0d 26649 . . . . . . . 8 (⊤ → (𝑂𝑐(1 / 3)) ≠ 0)
4136, 40eqnetrd 2995 . . . . . . 7 (⊤ → 𝑍 ≠ 0)
4235, 41reccld 11890 . . . . . 6 (⊤ → (1 / 𝑍) ∈ ℂ)
4335, 42addcld 11131 . . . . 5 (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ)
4416, 43eqeltrid 2835 . . . 4 (⊤ → 𝐴 ∈ ℂ)
45 cnfld0 21329 . . . 4 0 = (0g‘ℂfld)
46 cos9thpiminply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
47 eqid 2731 . . . 4 (0g𝑃) = (0g𝑃)
48 cos9thpiminply.4 . . . . . 6 + = (+g𝑃)
49 cos9thpiminply.5 . . . . . 6 · = (.r𝑃)
50 cos9thpiminply.6 . . . . . 6 = (.g‘(mulGrp‘𝑃))
51 cos9thpiminply.k . . . . . 6 𝐾 = (algSc‘𝑃)
52 cos9thpiminply.x . . . . . 6 𝑋 = (var1𝑄)
53 cos9thpiminply.d . . . . . 6 𝐷 = (deg1𝑄)
54 cos9thpiminply.f . . . . . 6 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
5518, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 44cos9thpiminplylem6 33800 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = ((𝐴↑3) + ((-3 · 𝐴) + 1)))
5618, 17, 16cos9thpiminplylem5 33799 . . . . 5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
5755, 56eqtrdi 2782 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
583qrng0 27559 . . . . 5 0 = (0g𝑄)
59 eqid 2731 . . . . 5 (eval1𝑄) = (eval1𝑄)
60 eqid 2731 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
613qfld 33263 . . . . . 6 𝑄 ∈ Field
6261a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
633qdrng 27558 . . . . . . . . . . 11 𝑄 ∈ DivRing
6463a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
6564drngringd 20652 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
662ply1ring 22160 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
6765, 66syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
6867ringgrpd 20160 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
69 eqid 2731 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
7069, 60mgpbas 20063 . . . . . . . 8 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
7169ringmgp 20157 . . . . . . . . 9 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7267, 71syl 17 . . . . . . . 8 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
73 3nn0 12399 . . . . . . . . 9 3 ∈ ℕ0
7473a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℕ0)
7552, 2, 60vr1cl 22130 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7665, 75syl 17 . . . . . . . 8 (⊤ → 𝑋 ∈ (Base‘𝑃))
7770, 50, 72, 74, 76mulgnn0cld 19008 . . . . . . 7 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
782ply1sca 22165 . . . . . . . . . . . 12 (𝑄 ∈ DivRing → 𝑄 = (Scalar‘𝑃))
7963, 78ax-mp 5 . . . . . . . . . . 11 𝑄 = (Scalar‘𝑃)
802ply1lmod 22164 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
8165, 80syl 17 . . . . . . . . . . 11 (⊤ → 𝑃 ∈ LMod)
823qrngbas 27557 . . . . . . . . . . 11 ℚ = (Base‘𝑄)
8351, 79, 67, 81, 82, 60asclf 21819 . . . . . . . . . 10 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
8474nn0zd 12494 . . . . . . . . . . 11 (⊤ → 3 ∈ ℤ)
85 zq 12852 . . . . . . . . . . 11 (3 ∈ ℤ → 3 ∈ ℚ)
86 qnegcl 12864 . . . . . . . . . . 11 (3 ∈ ℚ → -3 ∈ ℚ)
8784, 85, 863syl 18 . . . . . . . . . 10 (⊤ → -3 ∈ ℚ)
8883, 87ffvelcdmd 7018 . . . . . . . . 9 (⊤ → (𝐾‘-3) ∈ (Base‘𝑃))
8960, 49, 67, 88, 76ringcld 20178 . . . . . . . 8 (⊤ → ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃))
90 1zzd 12503 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
91 zq 12852 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
9290, 91syl 17 . . . . . . . . 9 (⊤ → 1 ∈ ℚ)
9383, 92ffvelcdmd 7018 . . . . . . . 8 (⊤ → (𝐾‘1) ∈ (Base‘𝑃))
9460, 48, 68, 89, 93grpcld 18860 . . . . . . 7 (⊤ → (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃))
9560, 48, 68, 77, 94grpcld 18860 . . . . . 6 (⊤ → ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) ∈ (Base‘𝑃))
9654, 95eqeltrid 2835 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
9762fldcrngd 20657 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
9859, 2, 60, 97, 82, 96evl1fvf 33526 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
9998ffnd 6652 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
100 fniniseg2 6995 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10199, 100syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10259, 82evl1fval1 22246 . . . . . . . . . . . . . . 15 (eval1𝑄) = (𝑄 evalSub1 ℚ)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (eval1𝑄) = (𝑄 evalSub1 ℚ))
104103fveq1d 6824 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((eval1𝑄)‘𝐹) = ((𝑄 evalSub1 ℚ)‘𝐹))
105104fveq1d 6824 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
106 eqid 2731 . . . . . . . . . . . . . . 15 (𝑄 evalSub1 ℚ) = (𝑄 evalSub1 ℚ)
107 cncrng 21325 . . . . . . . . . . . . . . . 16 fld ∈ CRing
108107a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℂfld ∈ CRing)
10911a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘ℂfld))
11097mptru 1548 . . . . . . . . . . . . . . . . . 18 𝑄 ∈ CRing
111110a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
112111crngringd 20164 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 𝑄 ∈ Ring)
11382subrgid 20488 . . . . . . . . . . . . . . . 16 (𝑄 ∈ Ring → ℚ ∈ (SubRing‘𝑄))
114112, 113syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘𝑄))
11596mptru 1548 . . . . . . . . . . . . . . . 16 𝐹 ∈ (Base‘𝑃)
116115a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
1173, 1, 106, 2, 3, 60, 108, 109, 114, 116ressply1evls1 33528 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑄 evalSub1 ℚ)‘𝐹) = (((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ))
118117fveq1d 6824 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥) = ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥))
119 fvres 6841 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥) = (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥))
120118, 119eqtr2d 2767 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
121 qcn 12861 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
12218, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 121cos9thpiminplylem6 33800 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
123105, 120, 1223eqtr2d 2772 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
124 id 22 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
125124cos9thpiminplylem2 33796 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) + ((-3 · 𝑥) + 1)) ≠ 0)
126123, 125eqnetrd 2995 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
127126neneqd 2933 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
128127rgen 3049 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
129128a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
130 rabeq0 4335 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
131129, 130sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
132101, 131eqtrd 2766 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
13354a1i 11 . . . . . . 7 (⊤ → 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))
134133fveq2d 6826 . . . . . 6 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
135 1lt3 12293 . . . . . . . . 9 1 < 3
136135a1i 11 . . . . . . . 8 (⊤ → 1 < 3)
137 0lt1 11639 . . . . . . . . . . . 12 0 < 1
138137a1i 11 . . . . . . . . . . 11 (⊤ → 0 < 1)
139138gt0ne0d 11681 . . . . . . . . . . . 12 (⊤ → 1 ≠ 0)
14053, 2, 82, 51, 58deg1scl 26045 . . . . . . . . . . . 12 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ ∧ 1 ≠ 0) → (𝐷‘(𝐾‘1)) = 0)
14165, 92, 139, 140syl3anc 1373 . . . . . . . . . . 11 (⊤ → (𝐷‘(𝐾‘1)) = 0)
142 drngdomn 20664 . . . . . . . . . . . . . 14 (𝑄 ∈ DivRing → 𝑄 ∈ Domn)
14363, 142mp1i 13 . . . . . . . . . . . . 13 (⊤ → 𝑄 ∈ Domn)
14427, 29negne0d 11470 . . . . . . . . . . . . . 14 (⊤ → -3 ≠ 0)
1452, 51, 58, 47, 82ply1scln0 22206 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐾‘-3) ≠ (0g𝑃))
14665, 87, 144, 145syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐾‘-3) ≠ (0g𝑃))
147107a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ CRing)
148 drngnzr 20663 . . . . . . . . . . . . . . 15 (ℂfld ∈ DivRing → ℂfld ∈ NzRing)
1499, 148mp1i 13 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ NzRing)
15011a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℚ ∈ (SubRing‘ℂfld))
15152, 47, 3, 2, 147, 149, 150vr1nz 33554 . . . . . . . . . . . . 13 (⊤ → 𝑋 ≠ (0g𝑃))
15253, 2, 60, 49, 47, 143, 88, 146, 76, 151deg1mul 26047 . . . . . . . . . . . 12 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)))
15353, 2, 82, 51, 58deg1scl 26045 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐷‘(𝐾‘-3)) = 0)
15465, 87, 144, 153syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐷‘(𝐾‘-3)) = 0)
155 drngnzr 20663 . . . . . . . . . . . . . . 15 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
15663, 155mp1i 13 . . . . . . . . . . . . . 14 (⊤ → 𝑄 ∈ NzRing)
15753, 2, 52, 156deg1vr 33553 . . . . . . . . . . . . 13 (⊤ → (𝐷𝑋) = 1)
158154, 157oveq12d 7364 . . . . . . . . . . . 12 (⊤ → ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)) = (0 + 1))
159 1cnd 11107 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℂ)
160159addlidd 11314 . . . . . . . . . . . 12 (⊤ → (0 + 1) = 1)
161152, 158, 1603eqtrd 2770 . . . . . . . . . . 11 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = 1)
162138, 141, 1613brtr4d 5121 . . . . . . . . . 10 (⊤ → (𝐷‘(𝐾‘1)) < (𝐷‘((𝐾‘-3) · 𝑋)))
1632, 53, 65, 60, 48, 89, 93, 162deg1add 26035 . . . . . . . . 9 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = (𝐷‘((𝐾‘-3) · 𝑋)))
164163, 161eqtrd 2766 . . . . . . . 8 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = 1)
16553, 2, 52, 69, 50deg1pw 26053 . . . . . . . . 9 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
166156, 74, 165syl2anc 584 . . . . . . . 8 (⊤ → (𝐷‘(3 𝑋)) = 3)
167136, 164, 1663brtr4d 5121 . . . . . . 7 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) < (𝐷‘(3 𝑋)))
1682, 53, 65, 60, 48, 77, 94, 167deg1add 26035 . . . . . 6 (⊤ → (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) = (𝐷‘(3 𝑋)))
169134, 168, 1663eqtrd 2770 . . . . 5 (⊤ → (𝐷𝐹) = 3)
17058, 59, 53, 2, 60, 62, 96, 132, 169ply1dg3rt0irred 33546 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
171 eqid 2731 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
172171, 47irredn0 20341 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
17367, 170, 172syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
174169fveq2d 6826 . . . . . 6 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
175133fveq2d 6826 . . . . . . . 8 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
176175fveq1d 6824 . . . . . . 7 (⊤ → ((coe1𝐹)‘3) = ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3))
177 cnfldadd 21297 . . . . . . . . . . 11 + = (+g‘ℂfld)
1783, 177ressplusg 17195 . . . . . . . . . 10 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
17911, 178ax-mp 5 . . . . . . . . 9 + = (+g𝑄)
1802, 60, 48, 179coe1addfv 22179 . . . . . . . 8 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
18165, 77, 94, 74, 180syl31anc 1375 . . . . . . 7 (⊤ → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
182 iftrue 4478 . . . . . . . . . 10 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1833qrng1 27560 . . . . . . . . . . 11 1 = (1r𝑄)
1842, 52, 50, 65, 74, 58, 183coe1mon 33549 . . . . . . . . . 10 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
185182, 184, 74, 159fvmptd4 6953 . . . . . . . . 9 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
1862, 60, 48, 179coe1addfv 22179 . . . . . . . . . . 11 (((𝑄 ∈ Ring ∧ ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘1) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
18765, 89, 93, 74, 186syl31anc 1375 . . . . . . . . . 10 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
1882ply1assa 22112 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ CRing → 𝑃 ∈ AssAlg)
18997, 188syl 17 . . . . . . . . . . . . . . . 16 (⊤ → 𝑃 ∈ AssAlg)
190 eqid 2731 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑃) = ( ·𝑠𝑃)
19151, 79, 82, 60, 49, 190asclmul1 21823 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ AssAlg ∧ -3 ∈ ℚ ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
192189, 87, 76, 191syl3anc 1373 . . . . . . . . . . . . . . 15 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
19370, 50mulg1 18994 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
19476, 193syl 17 . . . . . . . . . . . . . . . 16 (⊤ → (1 𝑋) = 𝑋)
195194oveq2d 7362 . . . . . . . . . . . . . . 15 (⊤ → (-3( ·𝑠𝑃)(1 𝑋)) = (-3( ·𝑠𝑃)𝑋))
196192, 195eqtr4d 2769 . . . . . . . . . . . . . 14 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)(1 𝑋)))
197196fveq2d 6826 . . . . . . . . . . . . 13 (⊤ → (coe1‘((𝐾‘-3) · 𝑋)) = (coe1‘(-3( ·𝑠𝑃)(1 𝑋))))
198197fveq1d 6824 . . . . . . . . . . . 12 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3))
199 1nn0 12397 . . . . . . . . . . . . . 14 1 ∈ ℕ0
200199a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℕ0)
201 1red 11113 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ℝ)
202201, 136ltned 11249 . . . . . . . . . . . . 13 (⊤ → 1 ≠ 3)
20358, 82, 2, 52, 190, 69, 50, 65, 87, 200, 74, 202coe1tmfv2 22189 . . . . . . . . . . . 12 (⊤ → ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3) = 0)
204198, 203eqtrd 2766 . . . . . . . . . . 11 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = 0)
2052, 51, 82, 58coe1scl 22201 . . . . . . . . . . . . 13 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ) → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
20665, 92, 205syl2anc 584 . . . . . . . . . . . 12 (⊤ → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
207 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 𝑖 = 3)
20828a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 3 ≠ 0)
209207, 208eqnetrd 2995 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑖 = 3) → 𝑖 ≠ 0)
210209neneqd 2933 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑖 = 3) → ¬ 𝑖 = 0)
211210iffalsed 4483 . . . . . . . . . . . 12 ((⊤ ∧ 𝑖 = 3) → if(𝑖 = 0, 1, 0) = 0)
212 0zd 12480 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℤ)
213206, 211, 74, 212fvmptd 6936 . . . . . . . . . . 11 (⊤ → ((coe1‘(𝐾‘1))‘3) = 0)
214204, 213oveq12d 7364 . . . . . . . . . 10 (⊤ → (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)) = (0 + 0))
215 00id 11288 . . . . . . . . . . 11 (0 + 0) = 0
216215a1i 11 . . . . . . . . . 10 (⊤ → (0 + 0) = 0)
217187, 214, 2163eqtrd 2770 . . . . . . . . 9 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = 0)
218185, 217oveq12d 7364 . . . . . . . 8 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = (1 + 0))
219159addridd 11313 . . . . . . . 8 (⊤ → (1 + 0) = 1)
220218, 219eqtrd 2766 . . . . . . 7 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = 1)
221176, 181, 2203eqtrd 2770 . . . . . 6 (⊤ → ((coe1𝐹)‘3) = 1)
222174, 221eqtrd 2766 . . . . 5 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
2233fveq2i 6825 . . . . . . 7 (Monic1p𝑄) = (Monic1p‘(ℂflds ℚ))
224223eqcomi 2740 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p𝑄)
2252, 60, 47, 53, 224, 183ismon1p 26075 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
22696, 173, 222, 225syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
2271, 5, 6, 8, 15, 44, 45, 46, 47, 57, 170, 226irredminply 33729 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
228227, 169jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
229228mptru 1548 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wral 3047  {crab 3395  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170  ccnv 5613  cres 5616  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007  ici 11008   + caddc 11009   · cmul 11011   < clt 11146  -cneg 11345   / cdiv 11774  2c2 12180  3c3 12181  0cn0 12381  cz 12468  cq 12846  cexp 13968  expce 15968  πcpi 15973  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  Mndcmnd 18642  .gcmg 18980  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152  Irredcir 20274  NzRingcnzr 20427  SubRingcsubrg 20484  Domncdomn 20607  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  LModclmod 20793  fldccnfld 21291  AssAlgcasa 21787  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090   evalSub1 ces1 22228  eval1ce1 22229  deg1cdg1 25986  Monic1pcmn1 26058  𝑐ccxp 26491   minPoly cminply 33712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-sgn 14994  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-pws 17353  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-irred 20277  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evls1 22230  df-evl1 22231  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-ig1p 26067  df-log 26492  df-cxp 26493  df-irng 33697  df-minply 33713
This theorem is referenced by:  cos9thpinconstrlem2  33803
  Copyright terms: Public domain W3C validator