Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminply Structured version   Visualization version   GIF version

Theorem cos9thpiminply 33771
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) is the minimal polynomial for 𝐴 over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
cos9thpiminply.q 𝑄 = (ℂflds ℚ)
cos9thpiminply.4 + = (+g𝑃)
cos9thpiminply.5 · = (.r𝑃)
cos9thpiminply.6 = (.g‘(mulGrp‘𝑃))
cos9thpiminply.p 𝑃 = (Poly1𝑄)
cos9thpiminply.k 𝐾 = (algSc‘𝑃)
cos9thpiminply.x 𝑋 = (var1𝑄)
cos9thpiminply.d 𝐷 = (deg1𝑄)
cos9thpiminply.f 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
cos9thpiminply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
cos9thpiminply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem cos9thpiminply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 cos9thpiminply.p . . . . 5 𝑃 = (Poly1𝑄)
3 cos9thpiminply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6843 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2752 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21300 . . . 4 ℂ = (Base‘ℂfld)
7 cnfldfld 33307 . . . . 5 fld ∈ Field
87a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
9 cndrng 21340 . . . . . 6 fld ∈ DivRing
10 qsubdrg 21361 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1210simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
13 issdrg 20708 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
16 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
17 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
18 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
19 ax-icn 11103 . . . . . . . . . . . . 13 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . 12 (⊤ → i ∈ ℂ)
21 2cnd 12240 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℂ)
22 picn 26400 . . . . . . . . . . . . . 14 π ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 (⊤ → π ∈ ℂ)
2421, 23mulcld 11170 . . . . . . . . . . . 12 (⊤ → (2 · π) ∈ ℂ)
2520, 24mulcld 11170 . . . . . . . . . . 11 (⊤ → (i · (2 · π)) ∈ ℂ)
26 3cn 12243 . . . . . . . . . . . 12 3 ∈ ℂ
2726a1i 11 . . . . . . . . . . 11 (⊤ → 3 ∈ ℂ)
28 3ne0 12268 . . . . . . . . . . . 12 3 ≠ 0
2928a1i 11 . . . . . . . . . . 11 (⊤ → 3 ≠ 0)
3025, 27, 29divcld 11934 . . . . . . . . . 10 (⊤ → ((i · (2 · π)) / 3) ∈ ℂ)
3130efcld 16025 . . . . . . . . 9 (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
3218, 31eqeltrid 2832 . . . . . . . 8 (⊤ → 𝑂 ∈ ℂ)
3327, 29reccld 11927 . . . . . . . 8 (⊤ → (1 / 3) ∈ ℂ)
3432, 33cxpcld 26650 . . . . . . 7 (⊤ → (𝑂𝑐(1 / 3)) ∈ ℂ)
3517, 34eqeltrid 2832 . . . . . 6 (⊤ → 𝑍 ∈ ℂ)
3617a1i 11 . . . . . . . 8 (⊤ → 𝑍 = (𝑂𝑐(1 / 3)))
3718a1i 11 . . . . . . . . . 10 (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3)))
3830efne0d 16039 . . . . . . . . . 10 (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
3937, 38eqnetrd 2992 . . . . . . . . 9 (⊤ → 𝑂 ≠ 0)
4032, 39, 33cxpne0d 26655 . . . . . . . 8 (⊤ → (𝑂𝑐(1 / 3)) ≠ 0)
4136, 40eqnetrd 2992 . . . . . . 7 (⊤ → 𝑍 ≠ 0)
4235, 41reccld 11927 . . . . . 6 (⊤ → (1 / 𝑍) ∈ ℂ)
4335, 42addcld 11169 . . . . 5 (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ)
4416, 43eqeltrid 2832 . . . 4 (⊤ → 𝐴 ∈ ℂ)
45 cnfld0 21334 . . . 4 0 = (0g‘ℂfld)
46 cos9thpiminply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
47 eqid 2729 . . . 4 (0g𝑃) = (0g𝑃)
48 cos9thpiminply.4 . . . . . 6 + = (+g𝑃)
49 cos9thpiminply.5 . . . . . 6 · = (.r𝑃)
50 cos9thpiminply.6 . . . . . 6 = (.g‘(mulGrp‘𝑃))
51 cos9thpiminply.k . . . . . 6 𝐾 = (algSc‘𝑃)
52 cos9thpiminply.x . . . . . 6 𝑋 = (var1𝑄)
53 cos9thpiminply.d . . . . . 6 𝐷 = (deg1𝑄)
54 cos9thpiminply.f . . . . . 6 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
5518, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 44cos9thpiminplylem6 33770 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = ((𝐴↑3) + ((-3 · 𝐴) + 1)))
5618, 17, 16cos9thpiminplylem5 33769 . . . . 5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
5755, 56eqtrdi 2780 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
583qrng0 27565 . . . . 5 0 = (0g𝑄)
59 eqid 2729 . . . . 5 (eval1𝑄) = (eval1𝑄)
60 eqid 2729 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
613qfld 33263 . . . . . 6 𝑄 ∈ Field
6261a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
633qdrng 27564 . . . . . . . . . . 11 𝑄 ∈ DivRing
6463a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
6564drngringd 20657 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
662ply1ring 22165 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
6765, 66syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
6867ringgrpd 20162 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
69 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
7069, 60mgpbas 20065 . . . . . . . 8 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
7169ringmgp 20159 . . . . . . . . 9 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7267, 71syl 17 . . . . . . . 8 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
73 3nn0 12436 . . . . . . . . 9 3 ∈ ℕ0
7473a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℕ0)
7552, 2, 60vr1cl 22135 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7665, 75syl 17 . . . . . . . 8 (⊤ → 𝑋 ∈ (Base‘𝑃))
7770, 50, 72, 74, 76mulgnn0cld 19009 . . . . . . 7 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
782ply1sca 22170 . . . . . . . . . . . 12 (𝑄 ∈ DivRing → 𝑄 = (Scalar‘𝑃))
7963, 78ax-mp 5 . . . . . . . . . . 11 𝑄 = (Scalar‘𝑃)
802ply1lmod 22169 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
8165, 80syl 17 . . . . . . . . . . 11 (⊤ → 𝑃 ∈ LMod)
823qrngbas 27563 . . . . . . . . . . 11 ℚ = (Base‘𝑄)
8351, 79, 67, 81, 82, 60asclf 21824 . . . . . . . . . 10 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
8474nn0zd 12531 . . . . . . . . . . 11 (⊤ → 3 ∈ ℤ)
85 zq 12889 . . . . . . . . . . 11 (3 ∈ ℤ → 3 ∈ ℚ)
86 qnegcl 12901 . . . . . . . . . . 11 (3 ∈ ℚ → -3 ∈ ℚ)
8784, 85, 863syl 18 . . . . . . . . . 10 (⊤ → -3 ∈ ℚ)
8883, 87ffvelcdmd 7039 . . . . . . . . 9 (⊤ → (𝐾‘-3) ∈ (Base‘𝑃))
8960, 49, 67, 88, 76ringcld 20180 . . . . . . . 8 (⊤ → ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃))
90 1zzd 12540 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
91 zq 12889 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
9290, 91syl 17 . . . . . . . . 9 (⊤ → 1 ∈ ℚ)
9383, 92ffvelcdmd 7039 . . . . . . . 8 (⊤ → (𝐾‘1) ∈ (Base‘𝑃))
9460, 48, 68, 89, 93grpcld 18861 . . . . . . 7 (⊤ → (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃))
9560, 48, 68, 77, 94grpcld 18861 . . . . . 6 (⊤ → ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) ∈ (Base‘𝑃))
9654, 95eqeltrid 2832 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
9762fldcrngd 20662 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
9859, 2, 60, 97, 82, 96evl1fvf 33525 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
9998ffnd 6671 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
100 fniniseg2 7016 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10199, 100syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10259, 82evl1fval1 22251 . . . . . . . . . . . . . . 15 (eval1𝑄) = (𝑄 evalSub1 ℚ)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (eval1𝑄) = (𝑄 evalSub1 ℚ))
104103fveq1d 6842 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((eval1𝑄)‘𝐹) = ((𝑄 evalSub1 ℚ)‘𝐹))
105104fveq1d 6842 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
106 eqid 2729 . . . . . . . . . . . . . . 15 (𝑄 evalSub1 ℚ) = (𝑄 evalSub1 ℚ)
107 cncrng 21330 . . . . . . . . . . . . . . . 16 fld ∈ CRing
108107a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℂfld ∈ CRing)
10911a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘ℂfld))
11097mptru 1547 . . . . . . . . . . . . . . . . . 18 𝑄 ∈ CRing
111110a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
112111crngringd 20166 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 𝑄 ∈ Ring)
11382subrgid 20493 . . . . . . . . . . . . . . . 16 (𝑄 ∈ Ring → ℚ ∈ (SubRing‘𝑄))
114112, 113syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘𝑄))
11596mptru 1547 . . . . . . . . . . . . . . . 16 𝐹 ∈ (Base‘𝑃)
116115a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
1173, 1, 106, 2, 3, 60, 108, 109, 114, 116ressply1evls1 33527 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑄 evalSub1 ℚ)‘𝐹) = (((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ))
118117fveq1d 6842 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥) = ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥))
119 fvres 6859 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥) = (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥))
120118, 119eqtr2d 2765 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
121 qcn 12898 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
12218, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 121cos9thpiminplylem6 33770 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
123105, 120, 1223eqtr2d 2770 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
124 id 22 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
125124cos9thpiminplylem2 33766 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) + ((-3 · 𝑥) + 1)) ≠ 0)
126123, 125eqnetrd 2992 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
127126neneqd 2930 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
128127rgen 3046 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
129128a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
130 rabeq0 4347 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
131129, 130sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
132101, 131eqtrd 2764 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
13354a1i 11 . . . . . . 7 (⊤ → 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))
134133fveq2d 6844 . . . . . 6 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
135 1lt3 12330 . . . . . . . . 9 1 < 3
136135a1i 11 . . . . . . . 8 (⊤ → 1 < 3)
137 0lt1 11676 . . . . . . . . . . . 12 0 < 1
138137a1i 11 . . . . . . . . . . 11 (⊤ → 0 < 1)
139138gt0ne0d 11718 . . . . . . . . . . . 12 (⊤ → 1 ≠ 0)
14053, 2, 82, 51, 58deg1scl 26051 . . . . . . . . . . . 12 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ ∧ 1 ≠ 0) → (𝐷‘(𝐾‘1)) = 0)
14165, 92, 139, 140syl3anc 1373 . . . . . . . . . . 11 (⊤ → (𝐷‘(𝐾‘1)) = 0)
142 drngdomn 20669 . . . . . . . . . . . . . 14 (𝑄 ∈ DivRing → 𝑄 ∈ Domn)
14363, 142mp1i 13 . . . . . . . . . . . . 13 (⊤ → 𝑄 ∈ Domn)
14427, 29negne0d 11507 . . . . . . . . . . . . . 14 (⊤ → -3 ≠ 0)
1452, 51, 58, 47, 82ply1scln0 22211 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐾‘-3) ≠ (0g𝑃))
14665, 87, 144, 145syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐾‘-3) ≠ (0g𝑃))
147107a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ CRing)
148 drngnzr 20668 . . . . . . . . . . . . . . 15 (ℂfld ∈ DivRing → ℂfld ∈ NzRing)
1499, 148mp1i 13 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ NzRing)
15011a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℚ ∈ (SubRing‘ℂfld))
15152, 47, 3, 2, 147, 149, 150vr1nz 33552 . . . . . . . . . . . . 13 (⊤ → 𝑋 ≠ (0g𝑃))
15253, 2, 60, 49, 47, 143, 88, 146, 76, 151deg1mul 26053 . . . . . . . . . . . 12 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)))
15353, 2, 82, 51, 58deg1scl 26051 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐷‘(𝐾‘-3)) = 0)
15465, 87, 144, 153syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐷‘(𝐾‘-3)) = 0)
155 drngnzr 20668 . . . . . . . . . . . . . . 15 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
15663, 155mp1i 13 . . . . . . . . . . . . . 14 (⊤ → 𝑄 ∈ NzRing)
15753, 2, 52, 156deg1vr 33551 . . . . . . . . . . . . 13 (⊤ → (𝐷𝑋) = 1)
158154, 157oveq12d 7387 . . . . . . . . . . . 12 (⊤ → ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)) = (0 + 1))
159 1cnd 11145 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℂ)
160159addlidd 11351 . . . . . . . . . . . 12 (⊤ → (0 + 1) = 1)
161152, 158, 1603eqtrd 2768 . . . . . . . . . . 11 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = 1)
162138, 141, 1613brtr4d 5134 . . . . . . . . . 10 (⊤ → (𝐷‘(𝐾‘1)) < (𝐷‘((𝐾‘-3) · 𝑋)))
1632, 53, 65, 60, 48, 89, 93, 162deg1add 26041 . . . . . . . . 9 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = (𝐷‘((𝐾‘-3) · 𝑋)))
164163, 161eqtrd 2764 . . . . . . . 8 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = 1)
16553, 2, 52, 69, 50deg1pw 26059 . . . . . . . . 9 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
166156, 74, 165syl2anc 584 . . . . . . . 8 (⊤ → (𝐷‘(3 𝑋)) = 3)
167136, 164, 1663brtr4d 5134 . . . . . . 7 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) < (𝐷‘(3 𝑋)))
1682, 53, 65, 60, 48, 77, 94, 167deg1add 26041 . . . . . 6 (⊤ → (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) = (𝐷‘(3 𝑋)))
169134, 168, 1663eqtrd 2768 . . . . 5 (⊤ → (𝐷𝐹) = 3)
17058, 59, 53, 2, 60, 62, 96, 132, 169ply1dg3rt0irred 33544 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
171 eqid 2729 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
172171, 47irredn0 20343 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
17367, 170, 172syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
174169fveq2d 6844 . . . . . 6 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
175133fveq2d 6844 . . . . . . . 8 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
176175fveq1d 6842 . . . . . . 7 (⊤ → ((coe1𝐹)‘3) = ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3))
177 cnfldadd 21302 . . . . . . . . . . 11 + = (+g‘ℂfld)
1783, 177ressplusg 17230 . . . . . . . . . 10 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
17911, 178ax-mp 5 . . . . . . . . 9 + = (+g𝑄)
1802, 60, 48, 179coe1addfv 22184 . . . . . . . 8 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
18165, 77, 94, 74, 180syl31anc 1375 . . . . . . 7 (⊤ → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
182 iftrue 4490 . . . . . . . . . 10 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1833qrng1 27566 . . . . . . . . . . 11 1 = (1r𝑄)
1842, 52, 50, 65, 74, 58, 183coe1mon 33547 . . . . . . . . . 10 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
185182, 184, 74, 159fvmptd4 6974 . . . . . . . . 9 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
1862, 60, 48, 179coe1addfv 22184 . . . . . . . . . . 11 (((𝑄 ∈ Ring ∧ ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘1) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
18765, 89, 93, 74, 186syl31anc 1375 . . . . . . . . . 10 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
1882ply1assa 22117 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ CRing → 𝑃 ∈ AssAlg)
18997, 188syl 17 . . . . . . . . . . . . . . . 16 (⊤ → 𝑃 ∈ AssAlg)
190 eqid 2729 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑃) = ( ·𝑠𝑃)
19151, 79, 82, 60, 49, 190asclmul1 21828 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ AssAlg ∧ -3 ∈ ℚ ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
192189, 87, 76, 191syl3anc 1373 . . . . . . . . . . . . . . 15 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
19370, 50mulg1 18995 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
19476, 193syl 17 . . . . . . . . . . . . . . . 16 (⊤ → (1 𝑋) = 𝑋)
195194oveq2d 7385 . . . . . . . . . . . . . . 15 (⊤ → (-3( ·𝑠𝑃)(1 𝑋)) = (-3( ·𝑠𝑃)𝑋))
196192, 195eqtr4d 2767 . . . . . . . . . . . . . 14 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)(1 𝑋)))
197196fveq2d 6844 . . . . . . . . . . . . 13 (⊤ → (coe1‘((𝐾‘-3) · 𝑋)) = (coe1‘(-3( ·𝑠𝑃)(1 𝑋))))
198197fveq1d 6842 . . . . . . . . . . . 12 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3))
199 1nn0 12434 . . . . . . . . . . . . . 14 1 ∈ ℕ0
200199a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℕ0)
201 1red 11151 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ℝ)
202201, 136ltned 11286 . . . . . . . . . . . . 13 (⊤ → 1 ≠ 3)
20358, 82, 2, 52, 190, 69, 50, 65, 87, 200, 74, 202coe1tmfv2 22194 . . . . . . . . . . . 12 (⊤ → ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3) = 0)
204198, 203eqtrd 2764 . . . . . . . . . . 11 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = 0)
2052, 51, 82, 58coe1scl 22206 . . . . . . . . . . . . 13 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ) → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
20665, 92, 205syl2anc 584 . . . . . . . . . . . 12 (⊤ → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
207 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 𝑖 = 3)
20828a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 3 ≠ 0)
209207, 208eqnetrd 2992 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑖 = 3) → 𝑖 ≠ 0)
210209neneqd 2930 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑖 = 3) → ¬ 𝑖 = 0)
211210iffalsed 4495 . . . . . . . . . . . 12 ((⊤ ∧ 𝑖 = 3) → if(𝑖 = 0, 1, 0) = 0)
212 0zd 12517 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℤ)
213206, 211, 74, 212fvmptd 6957 . . . . . . . . . . 11 (⊤ → ((coe1‘(𝐾‘1))‘3) = 0)
214204, 213oveq12d 7387 . . . . . . . . . 10 (⊤ → (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)) = (0 + 0))
215 00id 11325 . . . . . . . . . . 11 (0 + 0) = 0
216215a1i 11 . . . . . . . . . 10 (⊤ → (0 + 0) = 0)
217187, 214, 2163eqtrd 2768 . . . . . . . . 9 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = 0)
218185, 217oveq12d 7387 . . . . . . . 8 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = (1 + 0))
219159addridd 11350 . . . . . . . 8 (⊤ → (1 + 0) = 1)
220218, 219eqtrd 2764 . . . . . . 7 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = 1)
221176, 181, 2203eqtrd 2768 . . . . . 6 (⊤ → ((coe1𝐹)‘3) = 1)
222174, 221eqtrd 2764 . . . . 5 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
2233fveq2i 6843 . . . . . . 7 (Monic1p𝑄) = (Monic1p‘(ℂflds ℚ))
224223eqcomi 2738 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p𝑄)
2252, 60, 47, 53, 224, 183ismon1p 26081 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
22696, 173, 222, 225syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
2271, 5, 6, 8, 15, 44, 45, 46, 47, 57, 170, 226irredminply 33699 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
228227, 169jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
229228mptru 1547 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  {crab 3402  c0 4292  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cres 5633  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049   < clt 11184  -cneg 11382   / cdiv 11811  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cq 12883  cexp 14002  expce 16003  πcpi 16008  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  Mndcmnd 18643  .gcmg 18981  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  Irredcir 20276  NzRingcnzr 20432  SubRingcsubrg 20489  Domncdomn 20612  DivRingcdr 20649  Fieldcfield 20650  SubDRingcsdrg 20706  LModclmod 20798  fldccnfld 21296  AssAlgcasa 21792  algSccascl 21794  var1cv1 22093  Poly1cpl1 22094  coe1cco1 22095   evalSub1 ces1 22233  eval1ce1 22234  deg1cdg1 25992  Monic1pcmn1 26064  𝑐ccxp 26497   minPoly cminply 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-sgn 15029  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-pws 17388  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-irred 20279  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-sdrg 20707  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-assa 21795  df-asp 21796  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-evls 22014  df-evl 22015  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-evls1 22235  df-evl1 22236  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-mdeg 25993  df-deg1 25994  df-mon1 26069  df-uc1p 26070  df-q1p 26071  df-r1p 26072  df-ig1p 26073  df-log 26498  df-cxp 26499  df-irng 33672  df-minply 33683
This theorem is referenced by:  cos9thpinconstrlem2  33773
  Copyright terms: Public domain W3C validator