Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminply Structured version   Visualization version   GIF version

Theorem cos9thpiminply 33768
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) is the minimal polynomial for 𝐴 over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
cos9thpiminply.q 𝑄 = (ℂflds ℚ)
cos9thpiminply.4 + = (+g𝑃)
cos9thpiminply.5 · = (.r𝑃)
cos9thpiminply.6 = (.g‘(mulGrp‘𝑃))
cos9thpiminply.p 𝑃 = (Poly1𝑄)
cos9thpiminply.k 𝐾 = (algSc‘𝑃)
cos9thpiminply.x 𝑋 = (var1𝑄)
cos9thpiminply.d 𝐷 = (deg1𝑄)
cos9thpiminply.f 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
cos9thpiminply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
cos9thpiminply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem cos9thpiminply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 cos9thpiminply.p . . . . 5 𝑃 = (Poly1𝑄)
3 cos9thpiminply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6878 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2758 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21317 . . . 4 ℂ = (Base‘ℂfld)
7 cnfldfld 33304 . . . . 5 fld ∈ Field
87a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
9 cndrng 21359 . . . . . 6 fld ∈ DivRing
10 qsubdrg 21385 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1210simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
13 issdrg 20746 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
16 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
17 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
18 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
19 ax-icn 11186 . . . . . . . . . . . . 13 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . 12 (⊤ → i ∈ ℂ)
21 2cnd 12316 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℂ)
22 picn 26417 . . . . . . . . . . . . . 14 π ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 (⊤ → π ∈ ℂ)
2421, 23mulcld 11253 . . . . . . . . . . . 12 (⊤ → (2 · π) ∈ ℂ)
2520, 24mulcld 11253 . . . . . . . . . . 11 (⊤ → (i · (2 · π)) ∈ ℂ)
26 3cn 12319 . . . . . . . . . . . 12 3 ∈ ℂ
2726a1i 11 . . . . . . . . . . 11 (⊤ → 3 ∈ ℂ)
28 3ne0 12344 . . . . . . . . . . . 12 3 ≠ 0
2928a1i 11 . . . . . . . . . . 11 (⊤ → 3 ≠ 0)
3025, 27, 29divcld 12015 . . . . . . . . . 10 (⊤ → ((i · (2 · π)) / 3) ∈ ℂ)
3130efcld 16097 . . . . . . . . 9 (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
3218, 31eqeltrid 2838 . . . . . . . 8 (⊤ → 𝑂 ∈ ℂ)
3327, 29reccld 12008 . . . . . . . 8 (⊤ → (1 / 3) ∈ ℂ)
3432, 33cxpcld 26667 . . . . . . 7 (⊤ → (𝑂𝑐(1 / 3)) ∈ ℂ)
3517, 34eqeltrid 2838 . . . . . 6 (⊤ → 𝑍 ∈ ℂ)
3617a1i 11 . . . . . . . 8 (⊤ → 𝑍 = (𝑂𝑐(1 / 3)))
3718a1i 11 . . . . . . . . . 10 (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3)))
3830efne0d 16111 . . . . . . . . . 10 (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
3937, 38eqnetrd 2999 . . . . . . . . 9 (⊤ → 𝑂 ≠ 0)
4032, 39, 33cxpne0d 26672 . . . . . . . 8 (⊤ → (𝑂𝑐(1 / 3)) ≠ 0)
4136, 40eqnetrd 2999 . . . . . . 7 (⊤ → 𝑍 ≠ 0)
4235, 41reccld 12008 . . . . . 6 (⊤ → (1 / 𝑍) ∈ ℂ)
4335, 42addcld 11252 . . . . 5 (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ)
4416, 43eqeltrid 2838 . . . 4 (⊤ → 𝐴 ∈ ℂ)
45 cnfld0 21353 . . . 4 0 = (0g‘ℂfld)
46 cos9thpiminply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
47 eqid 2735 . . . 4 (0g𝑃) = (0g𝑃)
48 cos9thpiminply.4 . . . . . 6 + = (+g𝑃)
49 cos9thpiminply.5 . . . . . 6 · = (.r𝑃)
50 cos9thpiminply.6 . . . . . 6 = (.g‘(mulGrp‘𝑃))
51 cos9thpiminply.k . . . . . 6 𝐾 = (algSc‘𝑃)
52 cos9thpiminply.x . . . . . 6 𝑋 = (var1𝑄)
53 cos9thpiminply.d . . . . . 6 𝐷 = (deg1𝑄)
54 cos9thpiminply.f . . . . . 6 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
5518, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 44cos9thpiminplylem6 33767 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = ((𝐴↑3) + ((-3 · 𝐴) + 1)))
5618, 17, 16cos9thpiminplylem5 33766 . . . . 5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
5755, 56eqtrdi 2786 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
583qrng0 27582 . . . . 5 0 = (0g𝑄)
59 eqid 2735 . . . . 5 (eval1𝑄) = (eval1𝑄)
60 eqid 2735 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
613qfld 33237 . . . . . 6 𝑄 ∈ Field
6261a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
633qdrng 27581 . . . . . . . . . . 11 𝑄 ∈ DivRing
6463a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
6564drngringd 20695 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
662ply1ring 22181 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
6765, 66syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
6867ringgrpd 20200 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
69 eqid 2735 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
7069, 60mgpbas 20103 . . . . . . . 8 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
7169ringmgp 20197 . . . . . . . . 9 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7267, 71syl 17 . . . . . . . 8 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
73 3nn0 12517 . . . . . . . . 9 3 ∈ ℕ0
7473a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℕ0)
7552, 2, 60vr1cl 22151 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7665, 75syl 17 . . . . . . . 8 (⊤ → 𝑋 ∈ (Base‘𝑃))
7770, 50, 72, 74, 76mulgnn0cld 19076 . . . . . . 7 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
782ply1sca 22186 . . . . . . . . . . . 12 (𝑄 ∈ DivRing → 𝑄 = (Scalar‘𝑃))
7963, 78ax-mp 5 . . . . . . . . . . 11 𝑄 = (Scalar‘𝑃)
802ply1lmod 22185 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
8165, 80syl 17 . . . . . . . . . . 11 (⊤ → 𝑃 ∈ LMod)
823qrngbas 27580 . . . . . . . . . . 11 ℚ = (Base‘𝑄)
8351, 79, 67, 81, 82, 60asclf 21840 . . . . . . . . . 10 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
8474nn0zd 12612 . . . . . . . . . . 11 (⊤ → 3 ∈ ℤ)
85 zq 12968 . . . . . . . . . . 11 (3 ∈ ℤ → 3 ∈ ℚ)
86 qnegcl 12980 . . . . . . . . . . 11 (3 ∈ ℚ → -3 ∈ ℚ)
8784, 85, 863syl 18 . . . . . . . . . 10 (⊤ → -3 ∈ ℚ)
8883, 87ffvelcdmd 7074 . . . . . . . . 9 (⊤ → (𝐾‘-3) ∈ (Base‘𝑃))
8960, 49, 67, 88, 76ringcld 20218 . . . . . . . 8 (⊤ → ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃))
90 1zzd 12621 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
91 zq 12968 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
9290, 91syl 17 . . . . . . . . 9 (⊤ → 1 ∈ ℚ)
9383, 92ffvelcdmd 7074 . . . . . . . 8 (⊤ → (𝐾‘1) ∈ (Base‘𝑃))
9460, 48, 68, 89, 93grpcld 18928 . . . . . . 7 (⊤ → (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃))
9560, 48, 68, 77, 94grpcld 18928 . . . . . 6 (⊤ → ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) ∈ (Base‘𝑃))
9654, 95eqeltrid 2838 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
9762fldcrngd 20700 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
9859, 2, 60, 97, 82, 96evl1fvf 33522 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
9998ffnd 6706 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
100 fniniseg2 7051 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10199, 100syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10259, 82evl1fval1 22267 . . . . . . . . . . . . . . 15 (eval1𝑄) = (𝑄 evalSub1 ℚ)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (eval1𝑄) = (𝑄 evalSub1 ℚ))
104103fveq1d 6877 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((eval1𝑄)‘𝐹) = ((𝑄 evalSub1 ℚ)‘𝐹))
105104fveq1d 6877 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
106 eqid 2735 . . . . . . . . . . . . . . 15 (𝑄 evalSub1 ℚ) = (𝑄 evalSub1 ℚ)
107 cncrng 21349 . . . . . . . . . . . . . . . 16 fld ∈ CRing
108107a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℂfld ∈ CRing)
10911a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘ℂfld))
11097mptru 1547 . . . . . . . . . . . . . . . . . 18 𝑄 ∈ CRing
111110a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
112111crngringd 20204 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 𝑄 ∈ Ring)
11382subrgid 20531 . . . . . . . . . . . . . . . 16 (𝑄 ∈ Ring → ℚ ∈ (SubRing‘𝑄))
114112, 113syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘𝑄))
11596mptru 1547 . . . . . . . . . . . . . . . 16 𝐹 ∈ (Base‘𝑃)
116115a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
1173, 1, 106, 2, 3, 60, 108, 109, 114, 116ressply1evls1 33524 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑄 evalSub1 ℚ)‘𝐹) = (((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ))
118117fveq1d 6877 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥) = ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥))
119 fvres 6894 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥) = (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥))
120118, 119eqtr2d 2771 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
121 qcn 12977 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
12218, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 121cos9thpiminplylem6 33767 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
123105, 120, 1223eqtr2d 2776 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
124 id 22 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
125124cos9thpiminplylem2 33763 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) + ((-3 · 𝑥) + 1)) ≠ 0)
126123, 125eqnetrd 2999 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
127126neneqd 2937 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
128127rgen 3053 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
129128a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
130 rabeq0 4363 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
131129, 130sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
132101, 131eqtrd 2770 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
13354a1i 11 . . . . . . 7 (⊤ → 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))
134133fveq2d 6879 . . . . . 6 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
135 1lt3 12411 . . . . . . . . 9 1 < 3
136135a1i 11 . . . . . . . 8 (⊤ → 1 < 3)
137 0lt1 11757 . . . . . . . . . . . 12 0 < 1
138137a1i 11 . . . . . . . . . . 11 (⊤ → 0 < 1)
139138gt0ne0d 11799 . . . . . . . . . . . 12 (⊤ → 1 ≠ 0)
14053, 2, 82, 51, 58deg1scl 26068 . . . . . . . . . . . 12 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ ∧ 1 ≠ 0) → (𝐷‘(𝐾‘1)) = 0)
14165, 92, 139, 140syl3anc 1373 . . . . . . . . . . 11 (⊤ → (𝐷‘(𝐾‘1)) = 0)
142 drngdomn 20707 . . . . . . . . . . . . . 14 (𝑄 ∈ DivRing → 𝑄 ∈ Domn)
14363, 142mp1i 13 . . . . . . . . . . . . 13 (⊤ → 𝑄 ∈ Domn)
14427, 29negne0d 11590 . . . . . . . . . . . . . 14 (⊤ → -3 ≠ 0)
1452, 51, 58, 47, 82ply1scln0 22227 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐾‘-3) ≠ (0g𝑃))
14665, 87, 144, 145syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐾‘-3) ≠ (0g𝑃))
147107a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ CRing)
148 drngnzr 20706 . . . . . . . . . . . . . . 15 (ℂfld ∈ DivRing → ℂfld ∈ NzRing)
1499, 148mp1i 13 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ NzRing)
15011a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℚ ∈ (SubRing‘ℂfld))
15152, 47, 3, 2, 147, 149, 150vr1nz 33549 . . . . . . . . . . . . 13 (⊤ → 𝑋 ≠ (0g𝑃))
15253, 2, 60, 49, 47, 143, 88, 146, 76, 151deg1mul 26070 . . . . . . . . . . . 12 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)))
15353, 2, 82, 51, 58deg1scl 26068 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐷‘(𝐾‘-3)) = 0)
15465, 87, 144, 153syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐷‘(𝐾‘-3)) = 0)
155 drngnzr 20706 . . . . . . . . . . . . . . 15 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
15663, 155mp1i 13 . . . . . . . . . . . . . 14 (⊤ → 𝑄 ∈ NzRing)
15753, 2, 52, 156deg1vr 33548 . . . . . . . . . . . . 13 (⊤ → (𝐷𝑋) = 1)
158154, 157oveq12d 7421 . . . . . . . . . . . 12 (⊤ → ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)) = (0 + 1))
159 1cnd 11228 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℂ)
160159addlidd 11434 . . . . . . . . . . . 12 (⊤ → (0 + 1) = 1)
161152, 158, 1603eqtrd 2774 . . . . . . . . . . 11 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = 1)
162138, 141, 1613brtr4d 5151 . . . . . . . . . 10 (⊤ → (𝐷‘(𝐾‘1)) < (𝐷‘((𝐾‘-3) · 𝑋)))
1632, 53, 65, 60, 48, 89, 93, 162deg1add 26058 . . . . . . . . 9 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = (𝐷‘((𝐾‘-3) · 𝑋)))
164163, 161eqtrd 2770 . . . . . . . 8 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = 1)
16553, 2, 52, 69, 50deg1pw 26076 . . . . . . . . 9 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
166156, 74, 165syl2anc 584 . . . . . . . 8 (⊤ → (𝐷‘(3 𝑋)) = 3)
167136, 164, 1663brtr4d 5151 . . . . . . 7 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) < (𝐷‘(3 𝑋)))
1682, 53, 65, 60, 48, 77, 94, 167deg1add 26058 . . . . . 6 (⊤ → (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) = (𝐷‘(3 𝑋)))
169134, 168, 1663eqtrd 2774 . . . . 5 (⊤ → (𝐷𝐹) = 3)
17058, 59, 53, 2, 60, 62, 96, 132, 169ply1dg3rt0irred 33541 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
171 eqid 2735 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
172171, 47irredn0 20381 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
17367, 170, 172syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
174169fveq2d 6879 . . . . . 6 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
175133fveq2d 6879 . . . . . . . 8 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
176175fveq1d 6877 . . . . . . 7 (⊤ → ((coe1𝐹)‘3) = ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3))
177 cnfldadd 21319 . . . . . . . . . . 11 + = (+g‘ℂfld)
1783, 177ressplusg 17303 . . . . . . . . . 10 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
17911, 178ax-mp 5 . . . . . . . . 9 + = (+g𝑄)
1802, 60, 48, 179coe1addfv 22200 . . . . . . . 8 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
18165, 77, 94, 74, 180syl31anc 1375 . . . . . . 7 (⊤ → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
182 iftrue 4506 . . . . . . . . . 10 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1833qrng1 27583 . . . . . . . . . . 11 1 = (1r𝑄)
1842, 52, 50, 65, 74, 58, 183coe1mon 33544 . . . . . . . . . 10 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
185182, 184, 74, 159fvmptd4 7009 . . . . . . . . 9 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
1862, 60, 48, 179coe1addfv 22200 . . . . . . . . . . 11 (((𝑄 ∈ Ring ∧ ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘1) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
18765, 89, 93, 74, 186syl31anc 1375 . . . . . . . . . 10 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
1882ply1assa 22133 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ CRing → 𝑃 ∈ AssAlg)
18997, 188syl 17 . . . . . . . . . . . . . . . 16 (⊤ → 𝑃 ∈ AssAlg)
190 eqid 2735 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑃) = ( ·𝑠𝑃)
19151, 79, 82, 60, 49, 190asclmul1 21844 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ AssAlg ∧ -3 ∈ ℚ ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
192189, 87, 76, 191syl3anc 1373 . . . . . . . . . . . . . . 15 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
19370, 50mulg1 19062 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
19476, 193syl 17 . . . . . . . . . . . . . . . 16 (⊤ → (1 𝑋) = 𝑋)
195194oveq2d 7419 . . . . . . . . . . . . . . 15 (⊤ → (-3( ·𝑠𝑃)(1 𝑋)) = (-3( ·𝑠𝑃)𝑋))
196192, 195eqtr4d 2773 . . . . . . . . . . . . . 14 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)(1 𝑋)))
197196fveq2d 6879 . . . . . . . . . . . . 13 (⊤ → (coe1‘((𝐾‘-3) · 𝑋)) = (coe1‘(-3( ·𝑠𝑃)(1 𝑋))))
198197fveq1d 6877 . . . . . . . . . . . 12 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3))
199 1nn0 12515 . . . . . . . . . . . . . 14 1 ∈ ℕ0
200199a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℕ0)
201 1red 11234 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ℝ)
202201, 136ltned 11369 . . . . . . . . . . . . 13 (⊤ → 1 ≠ 3)
20358, 82, 2, 52, 190, 69, 50, 65, 87, 200, 74, 202coe1tmfv2 22210 . . . . . . . . . . . 12 (⊤ → ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3) = 0)
204198, 203eqtrd 2770 . . . . . . . . . . 11 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = 0)
2052, 51, 82, 58coe1scl 22222 . . . . . . . . . . . . 13 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ) → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
20665, 92, 205syl2anc 584 . . . . . . . . . . . 12 (⊤ → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
207 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 𝑖 = 3)
20828a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 3 ≠ 0)
209207, 208eqnetrd 2999 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑖 = 3) → 𝑖 ≠ 0)
210209neneqd 2937 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑖 = 3) → ¬ 𝑖 = 0)
211210iffalsed 4511 . . . . . . . . . . . 12 ((⊤ ∧ 𝑖 = 3) → if(𝑖 = 0, 1, 0) = 0)
212 0zd 12598 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℤ)
213206, 211, 74, 212fvmptd 6992 . . . . . . . . . . 11 (⊤ → ((coe1‘(𝐾‘1))‘3) = 0)
214204, 213oveq12d 7421 . . . . . . . . . 10 (⊤ → (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)) = (0 + 0))
215 00id 11408 . . . . . . . . . . 11 (0 + 0) = 0
216215a1i 11 . . . . . . . . . 10 (⊤ → (0 + 0) = 0)
217187, 214, 2163eqtrd 2774 . . . . . . . . 9 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = 0)
218185, 217oveq12d 7421 . . . . . . . 8 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = (1 + 0))
219159addridd 11433 . . . . . . . 8 (⊤ → (1 + 0) = 1)
220218, 219eqtrd 2770 . . . . . . 7 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = 1)
221176, 181, 2203eqtrd 2774 . . . . . 6 (⊤ → ((coe1𝐹)‘3) = 1)
222174, 221eqtrd 2770 . . . . 5 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
2233fveq2i 6878 . . . . . . 7 (Monic1p𝑄) = (Monic1p‘(ℂflds ℚ))
224223eqcomi 2744 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p𝑄)
2252, 60, 47, 53, 224, 183ismon1p 26098 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
22696, 173, 222, 225syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
2271, 5, 6, 8, 15, 44, 45, 46, 47, 57, 170, 226irredminply 33696 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
228227, 169jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
229228mptru 1547 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wral 3051  {crab 3415  c0 4308  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201  ccnv 5653  cres 5656  cima 5657   Fn wfn 6525  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128  ici 11129   + caddc 11130   · cmul 11132   < clt 11267  -cneg 11465   / cdiv 11892  2c2 12293  3c3 12294  0cn0 12499  cz 12586  cq 12962  cexp 14077  expce 16075  πcpi 16080  Basecbs 17226  s cress 17249  +gcplusg 17269  .rcmulr 17270  Scalarcsca 17272   ·𝑠 cvsca 17273  0gc0g 17451  Mndcmnd 18710  .gcmg 19048  mulGrpcmgp 20098  Ringcrg 20191  CRingccrg 20192  Irredcir 20314  NzRingcnzr 20470  SubRingcsubrg 20527  Domncdomn 20650  DivRingcdr 20687  Fieldcfield 20688  SubDRingcsdrg 20744  LModclmod 20815  fldccnfld 21313  AssAlgcasa 21808  algSccascl 21810  var1cv1 22109  Poly1cpl1 22110  coe1cco1 22111   evalSub1 ces1 22249  eval1ce1 22250  deg1cdg1 26009  Monic1pcmn1 26081  𝑐ccxp 26514   minPoly cminply 33679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-shft 15084  df-sgn 15104  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-clim 15502  df-rlim 15503  df-sum 15701  df-ef 16081  df-sin 16083  df-cos 16084  df-pi 16086  df-dvds 16271  df-gcd 16512  df-prm 16689  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-pws 17461  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-irred 20317  df-invr 20346  df-dvr 20359  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-idom 20654  df-drng 20689  df-field 20690  df-sdrg 20745  df-lmod 20817  df-lss 20887  df-lsp 20927  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-cnfld 21314  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evls1 22251  df-evl1 22252  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072  df-perf 23073  df-cn 23163  df-cnp 23164  df-haus 23251  df-tx 23498  df-hmeo 23691  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-xms 24257  df-ms 24258  df-tms 24259  df-cncf 24820  df-limc 25817  df-dv 25818  df-mdeg 26010  df-deg1 26011  df-mon1 26086  df-uc1p 26087  df-q1p 26088  df-r1p 26089  df-ig1p 26090  df-log 26515  df-cxp 26516  df-irng 33671  df-minply 33680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator