Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminply Structured version   Visualization version   GIF version

Theorem cos9thpiminply 33785
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) is the minimal polynomial for 𝐴 over , and its degree is 3. (Contributed by Thierry Arnoux, 14-Nov-2025.)
Hypotheses
Ref Expression
cos9thpiminplylem3.1 𝑂 = (exp‘((i · (2 · π)) / 3))
cos9thpiminplylem4.2 𝑍 = (𝑂𝑐(1 / 3))
cos9thpiminplylem5.3 𝐴 = (𝑍 + (1 / 𝑍))
cos9thpiminply.q 𝑄 = (ℂflds ℚ)
cos9thpiminply.4 + = (+g𝑃)
cos9thpiminply.5 · = (.r𝑃)
cos9thpiminply.6 = (.g‘(mulGrp‘𝑃))
cos9thpiminply.p 𝑃 = (Poly1𝑄)
cos9thpiminply.k 𝐾 = (algSc‘𝑃)
cos9thpiminply.x 𝑋 = (var1𝑄)
cos9thpiminply.d 𝐷 = (deg1𝑄)
cos9thpiminply.f 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
cos9thpiminply.m 𝑀 = (ℂfld minPoly ℚ)
Assertion
Ref Expression
cos9thpiminply (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)

Proof of Theorem cos9thpiminply
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
2 cos9thpiminply.p . . . . 5 𝑃 = (Poly1𝑄)
3 cos9thpiminply.q . . . . . 6 𝑄 = (ℂflds ℚ)
43fveq2i 6864 . . . . 5 (Poly1𝑄) = (Poly1‘(ℂflds ℚ))
52, 4eqtri 2753 . . . 4 𝑃 = (Poly1‘(ℂflds ℚ))
6 cnfldbas 21275 . . . 4 ℂ = (Base‘ℂfld)
7 cnfldfld 33321 . . . . 5 fld ∈ Field
87a1i 11 . . . 4 (⊤ → ℂfld ∈ Field)
9 cndrng 21317 . . . . . 6 fld ∈ DivRing
10 qsubdrg 21343 . . . . . . 7 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . 6 ℚ ∈ (SubRing‘ℂfld)
1210simpri 485 . . . . . 6 (ℂflds ℚ) ∈ DivRing
13 issdrg 20704 . . . . . 6 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1342 . . . . 5 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . 4 (⊤ → ℚ ∈ (SubDRing‘ℂfld))
16 cos9thpiminplylem5.3 . . . . 5 𝐴 = (𝑍 + (1 / 𝑍))
17 cos9thpiminplylem4.2 . . . . . . 7 𝑍 = (𝑂𝑐(1 / 3))
18 cos9thpiminplylem3.1 . . . . . . . . 9 𝑂 = (exp‘((i · (2 · π)) / 3))
19 ax-icn 11134 . . . . . . . . . . . . 13 i ∈ ℂ
2019a1i 11 . . . . . . . . . . . 12 (⊤ → i ∈ ℂ)
21 2cnd 12271 . . . . . . . . . . . . 13 (⊤ → 2 ∈ ℂ)
22 picn 26374 . . . . . . . . . . . . . 14 π ∈ ℂ
2322a1i 11 . . . . . . . . . . . . 13 (⊤ → π ∈ ℂ)
2421, 23mulcld 11201 . . . . . . . . . . . 12 (⊤ → (2 · π) ∈ ℂ)
2520, 24mulcld 11201 . . . . . . . . . . 11 (⊤ → (i · (2 · π)) ∈ ℂ)
26 3cn 12274 . . . . . . . . . . . 12 3 ∈ ℂ
2726a1i 11 . . . . . . . . . . 11 (⊤ → 3 ∈ ℂ)
28 3ne0 12299 . . . . . . . . . . . 12 3 ≠ 0
2928a1i 11 . . . . . . . . . . 11 (⊤ → 3 ≠ 0)
3025, 27, 29divcld 11965 . . . . . . . . . 10 (⊤ → ((i · (2 · π)) / 3) ∈ ℂ)
3130efcld 16056 . . . . . . . . 9 (⊤ → (exp‘((i · (2 · π)) / 3)) ∈ ℂ)
3218, 31eqeltrid 2833 . . . . . . . 8 (⊤ → 𝑂 ∈ ℂ)
3327, 29reccld 11958 . . . . . . . 8 (⊤ → (1 / 3) ∈ ℂ)
3432, 33cxpcld 26624 . . . . . . 7 (⊤ → (𝑂𝑐(1 / 3)) ∈ ℂ)
3517, 34eqeltrid 2833 . . . . . 6 (⊤ → 𝑍 ∈ ℂ)
3617a1i 11 . . . . . . . 8 (⊤ → 𝑍 = (𝑂𝑐(1 / 3)))
3718a1i 11 . . . . . . . . . 10 (⊤ → 𝑂 = (exp‘((i · (2 · π)) / 3)))
3830efne0d 16070 . . . . . . . . . 10 (⊤ → (exp‘((i · (2 · π)) / 3)) ≠ 0)
3937, 38eqnetrd 2993 . . . . . . . . 9 (⊤ → 𝑂 ≠ 0)
4032, 39, 33cxpne0d 26629 . . . . . . . 8 (⊤ → (𝑂𝑐(1 / 3)) ≠ 0)
4136, 40eqnetrd 2993 . . . . . . 7 (⊤ → 𝑍 ≠ 0)
4235, 41reccld 11958 . . . . . 6 (⊤ → (1 / 𝑍) ∈ ℂ)
4335, 42addcld 11200 . . . . 5 (⊤ → (𝑍 + (1 / 𝑍)) ∈ ℂ)
4416, 43eqeltrid 2833 . . . 4 (⊤ → 𝐴 ∈ ℂ)
45 cnfld0 21311 . . . 4 0 = (0g‘ℂfld)
46 cos9thpiminply.m . . . 4 𝑀 = (ℂfld minPoly ℚ)
47 eqid 2730 . . . 4 (0g𝑃) = (0g𝑃)
48 cos9thpiminply.4 . . . . . 6 + = (+g𝑃)
49 cos9thpiminply.5 . . . . . 6 · = (.r𝑃)
50 cos9thpiminply.6 . . . . . 6 = (.g‘(mulGrp‘𝑃))
51 cos9thpiminply.k . . . . . 6 𝐾 = (algSc‘𝑃)
52 cos9thpiminply.x . . . . . 6 𝑋 = (var1𝑄)
53 cos9thpiminply.d . . . . . 6 𝐷 = (deg1𝑄)
54 cos9thpiminply.f . . . . . 6 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))
5518, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 44cos9thpiminplylem6 33784 . . . . 5 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = ((𝐴↑3) + ((-3 · 𝐴) + 1)))
5618, 17, 16cos9thpiminplylem5 33783 . . . . 5 ((𝐴↑3) + ((-3 · 𝐴) + 1)) = 0
5755, 56eqtrdi 2781 . . . 4 (⊤ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝐴) = 0)
583qrng0 27539 . . . . 5 0 = (0g𝑄)
59 eqid 2730 . . . . 5 (eval1𝑄) = (eval1𝑄)
60 eqid 2730 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
613qfld 33254 . . . . . 6 𝑄 ∈ Field
6261a1i 11 . . . . 5 (⊤ → 𝑄 ∈ Field)
633qdrng 27538 . . . . . . . . . . 11 𝑄 ∈ DivRing
6463a1i 11 . . . . . . . . . 10 (⊤ → 𝑄 ∈ DivRing)
6564drngringd 20653 . . . . . . . . 9 (⊤ → 𝑄 ∈ Ring)
662ply1ring 22139 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑃 ∈ Ring)
6765, 66syl 17 . . . . . . . 8 (⊤ → 𝑃 ∈ Ring)
6867ringgrpd 20158 . . . . . . 7 (⊤ → 𝑃 ∈ Grp)
69 eqid 2730 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
7069, 60mgpbas 20061 . . . . . . . 8 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
7169ringmgp 20155 . . . . . . . . 9 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7267, 71syl 17 . . . . . . . 8 (⊤ → (mulGrp‘𝑃) ∈ Mnd)
73 3nn0 12467 . . . . . . . . 9 3 ∈ ℕ0
7473a1i 11 . . . . . . . 8 (⊤ → 3 ∈ ℕ0)
7552, 2, 60vr1cl 22109 . . . . . . . . 9 (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7665, 75syl 17 . . . . . . . 8 (⊤ → 𝑋 ∈ (Base‘𝑃))
7770, 50, 72, 74, 76mulgnn0cld 19034 . . . . . . 7 (⊤ → (3 𝑋) ∈ (Base‘𝑃))
782ply1sca 22144 . . . . . . . . . . . 12 (𝑄 ∈ DivRing → 𝑄 = (Scalar‘𝑃))
7963, 78ax-mp 5 . . . . . . . . . . 11 𝑄 = (Scalar‘𝑃)
802ply1lmod 22143 . . . . . . . . . . . 12 (𝑄 ∈ Ring → 𝑃 ∈ LMod)
8165, 80syl 17 . . . . . . . . . . 11 (⊤ → 𝑃 ∈ LMod)
823qrngbas 27537 . . . . . . . . . . 11 ℚ = (Base‘𝑄)
8351, 79, 67, 81, 82, 60asclf 21798 . . . . . . . . . 10 (⊤ → 𝐾:ℚ⟶(Base‘𝑃))
8474nn0zd 12562 . . . . . . . . . . 11 (⊤ → 3 ∈ ℤ)
85 zq 12920 . . . . . . . . . . 11 (3 ∈ ℤ → 3 ∈ ℚ)
86 qnegcl 12932 . . . . . . . . . . 11 (3 ∈ ℚ → -3 ∈ ℚ)
8784, 85, 863syl 18 . . . . . . . . . 10 (⊤ → -3 ∈ ℚ)
8883, 87ffvelcdmd 7060 . . . . . . . . 9 (⊤ → (𝐾‘-3) ∈ (Base‘𝑃))
8960, 49, 67, 88, 76ringcld 20176 . . . . . . . 8 (⊤ → ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃))
90 1zzd 12571 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
91 zq 12920 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
9290, 91syl 17 . . . . . . . . 9 (⊤ → 1 ∈ ℚ)
9383, 92ffvelcdmd 7060 . . . . . . . 8 (⊤ → (𝐾‘1) ∈ (Base‘𝑃))
9460, 48, 68, 89, 93grpcld 18886 . . . . . . 7 (⊤ → (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃))
9560, 48, 68, 77, 94grpcld 18886 . . . . . 6 (⊤ → ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) ∈ (Base‘𝑃))
9654, 95eqeltrid 2833 . . . . 5 (⊤ → 𝐹 ∈ (Base‘𝑃))
9762fldcrngd 20658 . . . . . . . . 9 (⊤ → 𝑄 ∈ CRing)
9859, 2, 60, 97, 82, 96evl1fvf 33539 . . . . . . . 8 (⊤ → ((eval1𝑄)‘𝐹):ℚ⟶ℚ)
9998ffnd 6692 . . . . . . 7 (⊤ → ((eval1𝑄)‘𝐹) Fn ℚ)
100 fniniseg2 7037 . . . . . . 7 (((eval1𝑄)‘𝐹) Fn ℚ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10199, 100syl 17 . . . . . 6 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0})
10259, 82evl1fval1 22225 . . . . . . . . . . . . . . 15 (eval1𝑄) = (𝑄 evalSub1 ℚ)
103102a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → (eval1𝑄) = (𝑄 evalSub1 ℚ))
104103fveq1d 6863 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((eval1𝑄)‘𝐹) = ((𝑄 evalSub1 ℚ)‘𝐹))
105104fveq1d 6863 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
106 eqid 2730 . . . . . . . . . . . . . . 15 (𝑄 evalSub1 ℚ) = (𝑄 evalSub1 ℚ)
107 cncrng 21307 . . . . . . . . . . . . . . . 16 fld ∈ CRing
108107a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℂfld ∈ CRing)
10911a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘ℂfld))
11097mptru 1547 . . . . . . . . . . . . . . . . . 18 𝑄 ∈ CRing
111110a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℚ → 𝑄 ∈ CRing)
112111crngringd 20162 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℚ → 𝑄 ∈ Ring)
11382subrgid 20489 . . . . . . . . . . . . . . . 16 (𝑄 ∈ Ring → ℚ ∈ (SubRing‘𝑄))
114112, 113syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → ℚ ∈ (SubRing‘𝑄))
11596mptru 1547 . . . . . . . . . . . . . . . 16 𝐹 ∈ (Base‘𝑃)
116115a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℚ → 𝐹 ∈ (Base‘𝑃))
1173, 1, 106, 2, 3, 60, 108, 109, 114, 116ressply1evls1 33541 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → ((𝑄 evalSub1 ℚ)‘𝐹) = (((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ))
118117fveq1d 6863 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥) = ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥))
119 fvres 6880 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → ((((ℂfld evalSub1 ℚ)‘𝐹) ↾ ℚ)‘𝑥) = (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥))
120118, 119eqtr2d 2766 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = (((𝑄 evalSub1 ℚ)‘𝐹)‘𝑥))
121 qcn 12929 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 ∈ ℂ)
12218, 17, 16, 3, 48, 49, 50, 2, 51, 52, 53, 54, 121cos9thpiminplylem6 33784 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → (((ℂfld evalSub1 ℚ)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
123105, 120, 1223eqtr2d 2771 . . . . . . . . . . 11 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) = ((𝑥↑3) + ((-3 · 𝑥) + 1)))
124 id 22 . . . . . . . . . . . 12 (𝑥 ∈ ℚ → 𝑥 ∈ ℚ)
125124cos9thpiminplylem2 33780 . . . . . . . . . . 11 (𝑥 ∈ ℚ → ((𝑥↑3) + ((-3 · 𝑥) + 1)) ≠ 0)
126123, 125eqnetrd 2993 . . . . . . . . . 10 (𝑥 ∈ ℚ → (((eval1𝑄)‘𝐹)‘𝑥) ≠ 0)
127126neneqd 2931 . . . . . . . . 9 (𝑥 ∈ ℚ → ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
128127rgen 3047 . . . . . . . 8 𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0
129128a1i 11 . . . . . . 7 (⊤ → ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
130 rabeq0 4354 . . . . . . 7 ({𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅ ↔ ∀𝑥 ∈ ℚ ¬ (((eval1𝑄)‘𝐹)‘𝑥) = 0)
131129, 130sylibr 234 . . . . . 6 (⊤ → {𝑥 ∈ ℚ ∣ (((eval1𝑄)‘𝐹)‘𝑥) = 0} = ∅)
132101, 131eqtrd 2765 . . . . 5 (⊤ → (((eval1𝑄)‘𝐹) “ {0}) = ∅)
13354a1i 11 . . . . . . 7 (⊤ → 𝐹 = ((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))
134133fveq2d 6865 . . . . . 6 (⊤ → (𝐷𝐹) = (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
135 1lt3 12361 . . . . . . . . 9 1 < 3
136135a1i 11 . . . . . . . 8 (⊤ → 1 < 3)
137 0lt1 11707 . . . . . . . . . . . 12 0 < 1
138137a1i 11 . . . . . . . . . . 11 (⊤ → 0 < 1)
139138gt0ne0d 11749 . . . . . . . . . . . 12 (⊤ → 1 ≠ 0)
14053, 2, 82, 51, 58deg1scl 26025 . . . . . . . . . . . 12 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ ∧ 1 ≠ 0) → (𝐷‘(𝐾‘1)) = 0)
14165, 92, 139, 140syl3anc 1373 . . . . . . . . . . 11 (⊤ → (𝐷‘(𝐾‘1)) = 0)
142 drngdomn 20665 . . . . . . . . . . . . . 14 (𝑄 ∈ DivRing → 𝑄 ∈ Domn)
14363, 142mp1i 13 . . . . . . . . . . . . 13 (⊤ → 𝑄 ∈ Domn)
14427, 29negne0d 11538 . . . . . . . . . . . . . 14 (⊤ → -3 ≠ 0)
1452, 51, 58, 47, 82ply1scln0 22185 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐾‘-3) ≠ (0g𝑃))
14665, 87, 144, 145syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐾‘-3) ≠ (0g𝑃))
147107a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ CRing)
148 drngnzr 20664 . . . . . . . . . . . . . . 15 (ℂfld ∈ DivRing → ℂfld ∈ NzRing)
1499, 148mp1i 13 . . . . . . . . . . . . . 14 (⊤ → ℂfld ∈ NzRing)
15011a1i 11 . . . . . . . . . . . . . 14 (⊤ → ℚ ∈ (SubRing‘ℂfld))
15152, 47, 3, 2, 147, 149, 150vr1nz 33566 . . . . . . . . . . . . 13 (⊤ → 𝑋 ≠ (0g𝑃))
15253, 2, 60, 49, 47, 143, 88, 146, 76, 151deg1mul 26027 . . . . . . . . . . . 12 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)))
15353, 2, 82, 51, 58deg1scl 26025 . . . . . . . . . . . . . 14 ((𝑄 ∈ Ring ∧ -3 ∈ ℚ ∧ -3 ≠ 0) → (𝐷‘(𝐾‘-3)) = 0)
15465, 87, 144, 153syl3anc 1373 . . . . . . . . . . . . 13 (⊤ → (𝐷‘(𝐾‘-3)) = 0)
155 drngnzr 20664 . . . . . . . . . . . . . . 15 (𝑄 ∈ DivRing → 𝑄 ∈ NzRing)
15663, 155mp1i 13 . . . . . . . . . . . . . 14 (⊤ → 𝑄 ∈ NzRing)
15753, 2, 52, 156deg1vr 33565 . . . . . . . . . . . . 13 (⊤ → (𝐷𝑋) = 1)
158154, 157oveq12d 7408 . . . . . . . . . . . 12 (⊤ → ((𝐷‘(𝐾‘-3)) + (𝐷𝑋)) = (0 + 1))
159 1cnd 11176 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℂ)
160159addlidd 11382 . . . . . . . . . . . 12 (⊤ → (0 + 1) = 1)
161152, 158, 1603eqtrd 2769 . . . . . . . . . . 11 (⊤ → (𝐷‘((𝐾‘-3) · 𝑋)) = 1)
162138, 141, 1613brtr4d 5142 . . . . . . . . . 10 (⊤ → (𝐷‘(𝐾‘1)) < (𝐷‘((𝐾‘-3) · 𝑋)))
1632, 53, 65, 60, 48, 89, 93, 162deg1add 26015 . . . . . . . . 9 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = (𝐷‘((𝐾‘-3) · 𝑋)))
164163, 161eqtrd 2765 . . . . . . . 8 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) = 1)
16553, 2, 52, 69, 50deg1pw 26033 . . . . . . . . 9 ((𝑄 ∈ NzRing ∧ 3 ∈ ℕ0) → (𝐷‘(3 𝑋)) = 3)
166156, 74, 165syl2anc 584 . . . . . . . 8 (⊤ → (𝐷‘(3 𝑋)) = 3)
167136, 164, 1663brtr4d 5142 . . . . . . 7 (⊤ → (𝐷‘(((𝐾‘-3) · 𝑋) + (𝐾‘1))) < (𝐷‘(3 𝑋)))
1682, 53, 65, 60, 48, 77, 94, 167deg1add 26015 . . . . . 6 (⊤ → (𝐷‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) = (𝐷‘(3 𝑋)))
169134, 168, 1663eqtrd 2769 . . . . 5 (⊤ → (𝐷𝐹) = 3)
17058, 59, 53, 2, 60, 62, 96, 132, 169ply1dg3rt0irred 33558 . . . 4 (⊤ → 𝐹 ∈ (Irred‘𝑃))
171 eqid 2730 . . . . . . 7 (Irred‘𝑃) = (Irred‘𝑃)
172171, 47irredn0 20339 . . . . . 6 ((𝑃 ∈ Ring ∧ 𝐹 ∈ (Irred‘𝑃)) → 𝐹 ≠ (0g𝑃))
17367, 170, 172syl2anc 584 . . . . 5 (⊤ → 𝐹 ≠ (0g𝑃))
174169fveq2d 6865 . . . . . 6 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘3))
175133fveq2d 6865 . . . . . . . 8 (⊤ → (coe1𝐹) = (coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))))
176175fveq1d 6863 . . . . . . 7 (⊤ → ((coe1𝐹)‘3) = ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3))
177 cnfldadd 21277 . . . . . . . . . . 11 + = (+g‘ℂfld)
1783, 177ressplusg 17261 . . . . . . . . . 10 (ℚ ∈ (SubRing‘ℂfld) → + = (+g𝑄))
17911, 178ax-mp 5 . . . . . . . . 9 + = (+g𝑄)
1802, 60, 48, 179coe1addfv 22158 . . . . . . . 8 (((𝑄 ∈ Ring ∧ (3 𝑋) ∈ (Base‘𝑃) ∧ (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
18165, 77, 94, 74, 180syl31anc 1375 . . . . . . 7 (⊤ → ((coe1‘((3 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘3) = (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)))
182 iftrue 4497 . . . . . . . . . 10 (𝑖 = 3 → if(𝑖 = 3, 1, 0) = 1)
1833qrng1 27540 . . . . . . . . . . 11 1 = (1r𝑄)
1842, 52, 50, 65, 74, 58, 183coe1mon 33561 . . . . . . . . . 10 (⊤ → (coe1‘(3 𝑋)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 3, 1, 0)))
185182, 184, 74, 159fvmptd4 6995 . . . . . . . . 9 (⊤ → ((coe1‘(3 𝑋))‘3) = 1)
1862, 60, 48, 179coe1addfv 22158 . . . . . . . . . . 11 (((𝑄 ∈ Ring ∧ ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃) ∧ (𝐾‘1) ∈ (Base‘𝑃)) ∧ 3 ∈ ℕ0) → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
18765, 89, 93, 74, 186syl31anc 1375 . . . . . . . . . 10 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)))
1882ply1assa 22091 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ CRing → 𝑃 ∈ AssAlg)
18997, 188syl 17 . . . . . . . . . . . . . . . 16 (⊤ → 𝑃 ∈ AssAlg)
190 eqid 2730 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝑃) = ( ·𝑠𝑃)
19151, 79, 82, 60, 49, 190asclmul1 21802 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ AssAlg ∧ -3 ∈ ℚ ∧ 𝑋 ∈ (Base‘𝑃)) → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
192189, 87, 76, 191syl3anc 1373 . . . . . . . . . . . . . . 15 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)𝑋))
19370, 50mulg1 19020 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
19476, 193syl 17 . . . . . . . . . . . . . . . 16 (⊤ → (1 𝑋) = 𝑋)
195194oveq2d 7406 . . . . . . . . . . . . . . 15 (⊤ → (-3( ·𝑠𝑃)(1 𝑋)) = (-3( ·𝑠𝑃)𝑋))
196192, 195eqtr4d 2768 . . . . . . . . . . . . . 14 (⊤ → ((𝐾‘-3) · 𝑋) = (-3( ·𝑠𝑃)(1 𝑋)))
197196fveq2d 6865 . . . . . . . . . . . . 13 (⊤ → (coe1‘((𝐾‘-3) · 𝑋)) = (coe1‘(-3( ·𝑠𝑃)(1 𝑋))))
198197fveq1d 6863 . . . . . . . . . . . 12 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3))
199 1nn0 12465 . . . . . . . . . . . . . 14 1 ∈ ℕ0
200199a1i 11 . . . . . . . . . . . . 13 (⊤ → 1 ∈ ℕ0)
201 1red 11182 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ℝ)
202201, 136ltned 11317 . . . . . . . . . . . . 13 (⊤ → 1 ≠ 3)
20358, 82, 2, 52, 190, 69, 50, 65, 87, 200, 74, 202coe1tmfv2 22168 . . . . . . . . . . . 12 (⊤ → ((coe1‘(-3( ·𝑠𝑃)(1 𝑋)))‘3) = 0)
204198, 203eqtrd 2765 . . . . . . . . . . 11 (⊤ → ((coe1‘((𝐾‘-3) · 𝑋))‘3) = 0)
2052, 51, 82, 58coe1scl 22180 . . . . . . . . . . . . 13 ((𝑄 ∈ Ring ∧ 1 ∈ ℚ) → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
20665, 92, 205syl2anc 584 . . . . . . . . . . . 12 (⊤ → (coe1‘(𝐾‘1)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 1, 0)))
207 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 𝑖 = 3)
20828a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑖 = 3) → 3 ≠ 0)
209207, 208eqnetrd 2993 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑖 = 3) → 𝑖 ≠ 0)
210209neneqd 2931 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑖 = 3) → ¬ 𝑖 = 0)
211210iffalsed 4502 . . . . . . . . . . . 12 ((⊤ ∧ 𝑖 = 3) → if(𝑖 = 0, 1, 0) = 0)
212 0zd 12548 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℤ)
213206, 211, 74, 212fvmptd 6978 . . . . . . . . . . 11 (⊤ → ((coe1‘(𝐾‘1))‘3) = 0)
214204, 213oveq12d 7408 . . . . . . . . . 10 (⊤ → (((coe1‘((𝐾‘-3) · 𝑋))‘3) + ((coe1‘(𝐾‘1))‘3)) = (0 + 0))
215 00id 11356 . . . . . . . . . . 11 (0 + 0) = 0
216215a1i 11 . . . . . . . . . 10 (⊤ → (0 + 0) = 0)
217187, 214, 2163eqtrd 2769 . . . . . . . . 9 (⊤ → ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3) = 0)
218185, 217oveq12d 7408 . . . . . . . 8 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = (1 + 0))
219159addridd 11381 . . . . . . . 8 (⊤ → (1 + 0) = 1)
220218, 219eqtrd 2765 . . . . . . 7 (⊤ → (((coe1‘(3 𝑋))‘3) + ((coe1‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘3)) = 1)
221176, 181, 2203eqtrd 2769 . . . . . 6 (⊤ → ((coe1𝐹)‘3) = 1)
222174, 221eqtrd 2765 . . . . 5 (⊤ → ((coe1𝐹)‘(𝐷𝐹)) = 1)
2233fveq2i 6864 . . . . . . 7 (Monic1p𝑄) = (Monic1p‘(ℂflds ℚ))
224223eqcomi 2739 . . . . . 6 (Monic1p‘(ℂflds ℚ)) = (Monic1p𝑄)
2252, 60, 47, 53, 224, 183ismon1p 26055 . . . . 5 (𝐹 ∈ (Monic1p‘(ℂflds ℚ)) ↔ (𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(𝐷𝐹)) = 1))
22696, 173, 222, 225syl3anbrc 1344 . . . 4 (⊤ → 𝐹 ∈ (Monic1p‘(ℂflds ℚ)))
2271, 5, 6, 8, 15, 44, 45, 46, 47, 57, 170, 226irredminply 33713 . . 3 (⊤ → 𝐹 = (𝑀𝐴))
228227, 169jca 511 . 2 (⊤ → (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3))
229228mptru 1547 1 (𝐹 = (𝑀𝐴) ∧ (𝐷𝐹) = 3)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wral 3045  {crab 3408  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cres 5643  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080   < clt 11215  -cneg 11413   / cdiv 11842  2c2 12248  3c3 12249  0cn0 12449  cz 12536  cq 12914  cexp 14033  expce 16034  πcpi 16039  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Mndcmnd 18668  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  Irredcir 20272  NzRingcnzr 20428  SubRingcsubrg 20485  Domncdomn 20608  DivRingcdr 20645  Fieldcfield 20646  SubDRingcsdrg 20702  LModclmod 20773  fldccnfld 21271  AssAlgcasa 21766  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069   evalSub1 ces1 22207  eval1ce1 22208  deg1cdg1 25966  Monic1pcmn1 26038  𝑐ccxp 26471   minPoly cminply 33696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-sgn 15060  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-pws 17419  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-log 26472  df-cxp 26473  df-irng 33686  df-minply 33697
This theorem is referenced by:  cos9thpinconstrlem2  33787
  Copyright terms: Public domain W3C validator