Proof of Theorem gpg5nbgrvtx03star
| Step | Hyp | Ref
| Expression |
| 1 | | eluz4eluz3 12908 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘4) → 𝑁 ∈
(ℤ≥‘3)) |
| 2 | | gpgnbgr.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 3 | | gpgnbgr.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 4 | | gpgnbgr.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 5 | | gpgnbgr.u |
. . . 4
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| 6 | 2, 3, 4, 5 | gpg3nbgrvtx0 48005 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
3) |
| 7 | 1, 6 | sylanl1 680 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
(♯‘𝑈) =
3) |
| 8 | | eqid 2734 |
. . . . . . 7
⊢ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 =
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉 |
| 9 | 2 | eleq2i 2825 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 10 | 9 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 11 | | gpgusgra 47985 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
| 12 | 3, 11 | eqeltrid 2837 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈
USGraph) |
| 13 | 1, 10, 12 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) → 𝐺 ∈ USGraph) |
| 14 | 13 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝐺 ∈ USGraph) |
| 15 | | gpgnbgr.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) |
| 16 | 15 | usgredgne 29152 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∈
𝐸) → 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ≠
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) |
| 17 | 16 | neneqd 2936 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∈
𝐸) → ¬ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 =
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉) |
| 18 | 17 | ex 412 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph →
({〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 =
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉)) |
| 19 | 14, 18 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∈
𝐸 → ¬ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 =
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉)) |
| 20 | 8, 19 | mt2i 137 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ¬ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∈
𝐸) |
| 21 | | df-nel 3036 |
. . . . . 6
⊢
({〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∉ 𝐸 ↔ ¬ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∈
𝐸) |
| 22 | 20, 21 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸) |
| 23 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) → 𝑁 ∈
(ℤ≥‘3)) |
| 24 | 23 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑁 ∈
(ℤ≥‘3)) |
| 25 | | simplr 768 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝐾 ∈ 𝐽) |
| 26 | 1 | anim1i 615 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) → (𝑁 ∈ (ℤ≥‘3)
∧ 𝐾 ∈ 𝐽)) |
| 27 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0) → 𝑋 ∈ 𝑉) |
| 28 | 26, 27 | anim12i 613 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉)) |
| 29 | | eqid 2734 |
. . . . . . . 8
⊢
(0..^𝑁) = (0..^𝑁) |
| 30 | 29, 2, 3, 4 | gpgvtxel2 47979 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ (0..^𝑁)) |
| 31 | 28, 30 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (2nd
‘𝑋) ∈ (0..^𝑁)) |
| 32 | 2, 3, 4, 15 | gpg5nbgrvtx03starlem1 47997 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ (2nd ‘𝑋) ∈ (0..^𝑁)) → {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸) |
| 33 | 24, 25, 31, 32 | syl3anc 1372 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸) |
| 34 | | simpll 766 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑁 ∈
(ℤ≥‘4)) |
| 35 | | elfzoelz 13681 |
. . . . . . 7
⊢
((2nd ‘𝑋) ∈ (0..^𝑁) → (2nd ‘𝑋) ∈
ℤ) |
| 36 | 28, 30, 35 | 3syl 18 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (2nd
‘𝑋) ∈
ℤ) |
| 37 | 2, 3, 4, 15 | gpg5nbgrvtx03starlem2 47998 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽 ∧ (2nd ‘𝑋) ∈ ℤ) →
{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∉ 𝐸) |
| 38 | 34, 25, 36, 37 | syl3anc 1372 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸) |
| 39 | | opex 5449 |
. . . . . 6
⊢ 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉 ∈
V |
| 40 | | opex 5449 |
. . . . . 6
⊢ 〈1,
(2nd ‘𝑋)〉 ∈ V |
| 41 | | opex 5449 |
. . . . . 6
⊢ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉
∈ V |
| 42 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉}) |
| 43 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} → ({〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸)) |
| 44 | 42, 43 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → ({〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸)) |
| 45 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈1, (2nd
‘𝑋)〉 →
{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉}) |
| 46 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉} →
({〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈1, (2nd
‘𝑋)〉 →
({〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 48 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |
| 49 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} → ({〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 50 | 48, 49 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → ({〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 51 | 39, 40, 41, 44, 47, 50 | raltp 4685 |
. . . . 5
⊢
(∀𝑦 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ ({〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸 ∧ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸 ∧ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 52 | 22, 33, 38, 51 | syl3anbrc 1343 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} ∉ 𝐸) |
| 53 | | prcom 4712 |
. . . . . . 7
⊢ {〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} = {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} |
| 54 | | neleq1 3041 |
. . . . . . 7
⊢
({〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} = {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} → ({〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸 ↔ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . 6
⊢
({〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∉ 𝐸 ↔ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸) |
| 56 | 33, 55 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∉ 𝐸) |
| 57 | | eqid 2734 |
. . . . . . 7
⊢ 〈1,
(2nd ‘𝑋)〉 = 〈1, (2nd
‘𝑋)〉 |
| 58 | 15 | usgredgne 29152 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∈
𝐸) → 〈1,
(2nd ‘𝑋)〉 ≠ 〈1, (2nd
‘𝑋)〉) |
| 59 | 58 | neneqd 2936 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∈
𝐸) → ¬ 〈1,
(2nd ‘𝑋)〉 = 〈1, (2nd
‘𝑋)〉) |
| 60 | 59 | ex 412 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph →
({〈1, (2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∈
𝐸 → ¬ 〈1,
(2nd ‘𝑋)〉 = 〈1, (2nd
‘𝑋)〉)) |
| 61 | 14, 60 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({〈1,
(2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∈
𝐸 → ¬ 〈1,
(2nd ‘𝑋)〉 = 〈1, (2nd
‘𝑋)〉)) |
| 62 | 57, 61 | mt2i 137 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ¬ {〈1,
(2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∈
𝐸) |
| 63 | | df-nel 3036 |
. . . . . 6
⊢
({〈1, (2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∉
𝐸 ↔ ¬ {〈1,
(2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∈
𝐸) |
| 64 | 62, 63 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈1,
(2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∉
𝐸) |
| 65 | 2, 3, 4, 15 | gpg5nbgrvtx03starlem3 47999 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ (2nd ‘𝑋) ∈ (0..^𝑁)) → {〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸) |
| 66 | 24, 25, 31, 65 | syl3anc 1372 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∉ 𝐸) |
| 67 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → {〈1,
(2nd ‘𝑋)〉, 𝑦} = {〈1, (2nd ‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉}) |
| 68 | | neleq1 3041 |
. . . . . . 7
⊢
({〈1, (2nd ‘𝑋)〉, 𝑦} = {〈1, (2nd ‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} →
({〈1, (2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸)) |
| 69 | 67, 68 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → ({〈1,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸)) |
| 70 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈1, (2nd
‘𝑋)〉 →
{〈1, (2nd ‘𝑋)〉, 𝑦} = {〈1, (2nd ‘𝑋)〉, 〈1,
(2nd ‘𝑋)〉}) |
| 71 | | neleq1 3041 |
. . . . . . 7
⊢
({〈1, (2nd ‘𝑋)〉, 𝑦} = {〈1, (2nd ‘𝑋)〉, 〈1,
(2nd ‘𝑋)〉} → ({〈1, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 72 | 70, 71 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈1, (2nd
‘𝑋)〉 →
({〈1, (2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 73 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → {〈1,
(2nd ‘𝑋)〉, 𝑦} = {〈1, (2nd ‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |
| 74 | | neleq1 3041 |
. . . . . . 7
⊢
({〈1, (2nd ‘𝑋)〉, 𝑦} = {〈1, (2nd ‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
→ ({〈1, (2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 75 | 73, 74 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → ({〈1,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 76 | 39, 40, 41, 69, 72, 75 | raltp 4685 |
. . . . 5
⊢
(∀𝑦 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
{〈1, (2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ ({〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸 ∧ {〈1,
(2nd ‘𝑋)〉, 〈1, (2nd
‘𝑋)〉} ∉
𝐸 ∧ {〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∉ 𝐸)) |
| 77 | 56, 64, 66, 76 | syl3anbrc 1343 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈1,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸) |
| 78 | | prcom 4712 |
. . . . . . 7
⊢ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} = {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉} |
| 79 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} = {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
→ ({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∉ 𝐸 ↔ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 80 | 78, 79 | ax-mp 5 |
. . . . . 6
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∉ 𝐸 ↔ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸) |
| 81 | 38, 80 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∉ 𝐸) |
| 82 | | prcom 4712 |
. . . . . . 7
⊢ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈1, (2nd ‘𝑋)〉} = {〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉} |
| 83 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉} =
{〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} → ({〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈1, (2nd ‘𝑋)〉} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 84 | 82, 83 | ax-mp 5 |
. . . . . 6
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉} ∉
𝐸 ↔ {〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∉ 𝐸) |
| 85 | 66, 84 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈1, (2nd ‘𝑋)〉} ∉ 𝐸) |
| 86 | | eqid 2734 |
. . . . . . 7
⊢ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉 =
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉 |
| 87 | 15 | usgredgne 29152 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸) → 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ≠ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉) |
| 88 | 87 | neneqd 2936 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸) → ¬ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 = 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉) |
| 89 | 88 | ex 412 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph →
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∈ 𝐸 → ¬ 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉 =
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉)) |
| 90 | 14, 89 | syl 17 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 = 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉)) |
| 91 | 86, 90 | mt2i 137 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ¬ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸) |
| 92 | | df-nel 3036 |
. . . . . 6
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} ∉ 𝐸 ↔ ¬ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸) |
| 93 | 91, 92 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∉ 𝐸) |
| 94 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
𝑦} = {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉}) |
| 95 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} →
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸)) |
| 96 | 94, 95 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → ({〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
𝑦} ∉ 𝐸 ↔ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∉ 𝐸)) |
| 97 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈1, (2nd
‘𝑋)〉 →
{〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉}) |
| 98 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉} → ({〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 99 | 97, 98 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈1, (2nd
‘𝑋)〉 →
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 〈1,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 100 | | preq2 4714 |
. . . . . . 7
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
𝑦} = {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉}) |
| 101 | | neleq1 3041 |
. . . . . . 7
⊢
({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} = {〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
→ ({〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 102 | 100, 101 | syl 17 |
. . . . . 6
⊢ (𝑦 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → ({〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
𝑦} ∉ 𝐸 ↔ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∉ 𝐸)) |
| 103 | 39, 40, 41, 96, 99, 102 | raltp 4685 |
. . . . 5
⊢
(∀𝑦 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
{〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ ({〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉} ∉
𝐸 ∧ {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
〈1, (2nd ‘𝑋)〉} ∉ 𝐸 ∧ {〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}
∉ 𝐸)) |
| 104 | 81, 85, 93, 103 | syl3anbrc 1343 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
𝑦} ∉ 𝐸) |
| 105 | | preq1 4713 |
. . . . . . 7
⊢ (𝑥 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → {𝑥, 𝑦} = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦}) |
| 106 | | neleq1 3041 |
. . . . . . 7
⊢ ({𝑥, 𝑦} = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 107 | 105, 106 | syl 17 |
. . . . . 6
⊢ (𝑥 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 108 | 107 | ralbidv 3165 |
. . . . 5
⊢ (𝑥 = 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 → (∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 109 | | preq1 4713 |
. . . . . . 7
⊢ (𝑥 = 〈1, (2nd
‘𝑋)〉 →
{𝑥, 𝑦} = {〈1, (2nd ‘𝑋)〉, 𝑦}) |
| 110 | | neleq1 3041 |
. . . . . . 7
⊢ ({𝑥, 𝑦} = {〈1, (2nd ‘𝑋)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸)) |
| 111 | 109, 110 | syl 17 |
. . . . . 6
⊢ (𝑥 = 〈1, (2nd
‘𝑋)〉 →
({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸)) |
| 112 | 111 | ralbidv 3165 |
. . . . 5
⊢ (𝑥 = 〈1, (2nd
‘𝑋)〉 →
(∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈1,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸)) |
| 113 | | preq1 4713 |
. . . . . . 7
⊢ (𝑥 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → {𝑥, 𝑦} = {〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦}) |
| 114 | | neleq1 3041 |
. . . . . . 7
⊢ ({𝑥, 𝑦} = {〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 𝑦} ∉ 𝐸)) |
| 115 | 113, 114 | syl 17 |
. . . . . 6
⊢ (𝑥 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉, 𝑦} ∉ 𝐸)) |
| 116 | 115 | ralbidv 3165 |
. . . . 5
⊢ (𝑥 = 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 →
(∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
𝑦} ∉ 𝐸)) |
| 117 | 39, 40, 41, 108, 112, 116 | raltp 4685 |
. . . 4
⊢
(∀𝑥 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ (∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈1,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉,
𝑦} ∉ 𝐸)) |
| 118 | 52, 77, 104, 117 | syl3anbrc 1343 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ∀𝑥 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {𝑥, 𝑦} ∉ 𝐸) |
| 119 | 2, 3, 4, 5 | gpgnbgrvtx0 48003 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |
| 120 | 1, 119 | sylanl1 680 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → 𝑈 = {〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉, 〈1, (2nd
‘𝑋)〉, 〈0,
(((2nd ‘𝑋)
− 1) mod 𝑁)〉}) |
| 121 | 120 | raleqdv 3309 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {𝑥, 𝑦} ∉ 𝐸)) |
| 122 | 120, 121 | raleqbidvv 3317 |
. . 3
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑥 ∈ {〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉}∀𝑦 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 𝑁)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉} {𝑥, 𝑦} ∉ 𝐸)) |
| 123 | 118, 122 | mpbird 257 |
. 2
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) |
| 124 | 7, 123 | jca 511 |
1
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |