Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5nbgrvtx03star Structured version   Visualization version   GIF version

Theorem gpg5nbgrvtx03star 48242
Description: In a generalized Petersen graph G(N,K) of order greater than 8 (3 < 𝑁), every outside vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every outside vertex induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
gpgnbgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpg5nbgrvtx03star (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑥,𝑋   𝑥,𝐸,𝑦
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem gpg5nbgrvtx03star
StepHypRef Expression
1 uzuzle34 12790 . . 3 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ (ℤ‘3))
2 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
5 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
62, 3, 4, 5gpg3nbgrvtx0 48238 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
71, 6sylanl1 680 . 2 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
8 eqid 2733 . . . . . . 7 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩
92eleq2i 2825 . . . . . . . . . . 11 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
109biimpi 216 . . . . . . . . . 10 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
11 gpgusgra 48219 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
123, 11eqeltrid 2837 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
131, 10, 12syl2an 596 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
1413adantr 480 . . . . . . . 8 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝐺 ∈ USGraph)
15 gpgnbgr.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
1615usgredgne 29205 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
1716neneqd 2934 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
1817ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
1914, 18syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
208, 19mt2i 137 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ¬ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸)
21 df-nel 3034 . . . . . 6 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸)
2220, 21sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸)
231adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) → 𝑁 ∈ (ℤ‘3))
2423adantr 480 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ (ℤ‘3))
25 simplr 768 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝐾𝐽)
261anim1i 615 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
27 simpl 482 . . . . . . . 8 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
2826, 27anim12i 613 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉))
29 eqid 2733 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
3029, 2, 3, 4gpgvtxel2 48210 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
3128, 30syl 17 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ (0..^𝑁))
322, 3, 4, 15gpg5nbgrvtx03starlem1 48230 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽 ∧ (2nd𝑋) ∈ (0..^𝑁)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
3324, 25, 31, 32syl3anc 1373 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
34 simpll 766 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ (ℤ‘4))
35 elfzoelz 13566 . . . . . . 7 ((2nd𝑋) ∈ (0..^𝑁) → (2nd𝑋) ∈ ℤ)
3628, 30, 353syl 18 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℤ)
372, 3, 4, 15gpg5nbgrvtx03starlem2 48231 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽 ∧ (2nd𝑋) ∈ ℤ) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
3834, 25, 36, 37syl3anc 1373 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
39 opex 5409 . . . . . 6 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V
40 opex 5409 . . . . . 6 ⟨1, (2nd𝑋)⟩ ∈ V
41 opex 5409 . . . . . 6 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V
42 preq2 4688 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
43 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
4442, 43syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
45 preq2 4688 . . . . . . 7 (𝑦 = ⟨1, (2nd𝑋)⟩ → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩})
46 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
4745, 46syl 17 . . . . . 6 (𝑦 = ⟨1, (2nd𝑋)⟩ → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
48 preq2 4688 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
49 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
5048, 49syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
5139, 40, 41, 44, 47, 50raltp 4659 . . . . 5 (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
5222, 33, 38, 51syl3anbrc 1344 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
53 prcom 4686 . . . . . . 7 {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩}
54 neleq1 3039 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
5553, 54ax-mp 5 . . . . . 6 ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
5633, 55sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸)
57 eqid 2733 . . . . . . 7 ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩
5815usgredgne 29205 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸) → ⟨1, (2nd𝑋)⟩ ≠ ⟨1, (2nd𝑋)⟩)
5958neneqd 2934 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸) → ¬ ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩)
6059ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩))
6114, 60syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩))
6257, 61mt2i 137 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ¬ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸)
63 df-nel 3034 . . . . . 6 ({⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ↔ ¬ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸)
6462, 63sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
652, 3, 4, 15gpg5nbgrvtx03starlem3 48232 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽 ∧ (2nd𝑋) ∈ (0..^𝑁)) → {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
6624, 25, 31, 65syl3anc 1373 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
67 preq2 4688 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
68 neleq1 3039 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
6967, 68syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
70 preq2 4688 . . . . . . 7 (𝑦 = ⟨1, (2nd𝑋)⟩ → {⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩})
71 neleq1 3039 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
7270, 71syl 17 . . . . . 6 (𝑦 = ⟨1, (2nd𝑋)⟩ → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
73 preq2 4688 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
74 neleq1 3039 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
7573, 74syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
7639, 40, 41, 69, 72, 75raltp 4659 . . . . 5 (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
7756, 64, 66, 76syl3anbrc 1344 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸)
78 prcom 4686 . . . . . . 7 {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}
79 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
8078, 79ax-mp 5 . . . . . 6 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
8138, 80sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸)
82 prcom 4686 . . . . . . 7 {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}
83 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
8482, 83ax-mp 5 . . . . . 6 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
8566, 84sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
86 eqid 2733 . . . . . . 7 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩
8715usgredgne 29205 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
8887neneqd 2934 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
8988ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
9014, 89syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
9186, 90mt2i 137 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ¬ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸)
92 df-nel 3034 . . . . . 6 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸)
9391, 92sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
94 preq2 4688 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
95 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
9694, 95syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
97 preq2 4688 . . . . . . 7 (𝑦 = ⟨1, (2nd𝑋)⟩ → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩})
98 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
9997, 98syl 17 . . . . . 6 (𝑦 = ⟨1, (2nd𝑋)⟩ → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
100 preq2 4688 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
101 neleq1 3039 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
102100, 101syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
10339, 40, 41, 96, 99, 102raltp 4659 . . . . 5 (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
10481, 85, 93, 103syl3anbrc 1344 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
105 preq1 4687 . . . . . . 7 (𝑥 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦})
106 neleq1 3039 . . . . . . 7 ({𝑥, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
107105, 106syl 17 . . . . . 6 (𝑥 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
108107ralbidv 3156 . . . . 5 (𝑥 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
109 preq1 4687 . . . . . . 7 (𝑥 = ⟨1, (2nd𝑋)⟩ → {𝑥, 𝑦} = {⟨1, (2nd𝑋)⟩, 𝑦})
110 neleq1 3039 . . . . . . 7 ({𝑥, 𝑦} = {⟨1, (2nd𝑋)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
111109, 110syl 17 . . . . . 6 (𝑥 = ⟨1, (2nd𝑋)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
112111ralbidv 3156 . . . . 5 (𝑥 = ⟨1, (2nd𝑋)⟩ → (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
113 preq1 4687 . . . . . . 7 (𝑥 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦})
114 neleq1 3039 . . . . . . 7 ({𝑥, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
115113, 114syl 17 . . . . . 6 (𝑥 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
116115ralbidv 3156 . . . . 5 (𝑥 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
11739, 40, 41, 108, 112, 116raltp 4659 . . . 4 (∀𝑥 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
11852, 77, 104, 117syl3anbrc 1344 . . 3 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑥 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸)
1192, 3, 4, 5gpgnbgrvtx0 48236 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
1201, 119sylanl1 680 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
121120raleqdv 3293 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (∀𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
122120, 121raleqbidvv 3301 . . 3 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑥 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
123118, 122mpbird 257 . 2 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)
1247, 123jca 511 1 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wnel 3033  wral 3048  {cpr 4579  {ctp 4581  cop 4583  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355   / cdiv 11785  2c2 12191  3c3 12192  4c4 12193  cz 12479  cuz 12742  ..^cfzo 13561  cceil 13702   mod cmo 13780  chash 14244  Vtxcvtx 28995  Edgcedg 29046  USGraphcusgr 29148   NeighbVtx cnbgr 29331   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-hash 14245  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-upgr 29081  df-umgr 29082  df-usgr 29150  df-nbgr 29332  df-gpg 48203
This theorem is referenced by:  gpg5nbgr3star  48243
  Copyright terms: Public domain W3C validator