Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5nbgrvtx03star Structured version   Visualization version   GIF version

Theorem gpg5nbgrvtx03star 48061
Description: In a generalized Petersen graph G(N,K) of order greater than 8 (3 < 𝑁), every outside vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every outside vertex induces a subgraph which is isomorphic to a 3-star). (Contributed by AV, 31-Aug-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
gpgnbgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpg5nbgrvtx03star (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑥,𝑋   𝑥,𝐸,𝑦
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem gpg5nbgrvtx03star
StepHypRef Expression
1 uzuzle34 12851 . . 3 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ (ℤ‘3))
2 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
5 gpgnbgr.u . . . 4 𝑈 = (𝐺 NeighbVtx 𝑋)
62, 3, 4, 5gpg3nbgrvtx0 48057 . . 3 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
71, 6sylanl1 680 . 2 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
8 eqid 2730 . . . . . . 7 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩
92eleq2i 2821 . . . . . . . . . . 11 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
109biimpi 216 . . . . . . . . . 10 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
11 gpgusgra 48038 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
123, 11eqeltrid 2833 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
131, 10, 12syl2an 596 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
1413adantr 480 . . . . . . . 8 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝐺 ∈ USGraph)
15 gpgnbgr.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
1615usgredgne 29139 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸) → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
1716neneqd 2931 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩)
1817ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
1914, 18syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩))
208, 19mt2i 137 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ¬ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸)
21 df-nel 3031 . . . . . 6 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∈ 𝐸)
2220, 21sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸)
231adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) → 𝑁 ∈ (ℤ‘3))
2423adantr 480 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ (ℤ‘3))
25 simplr 768 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝐾𝐽)
261anim1i 615 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
27 simpl 482 . . . . . . . 8 ((𝑋𝑉 ∧ (1st𝑋) = 0) → 𝑋𝑉)
2826, 27anim12i 613 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉))
29 eqid 2730 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
3029, 2, 3, 4gpgvtxel2 48029 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
3128, 30syl 17 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ (0..^𝑁))
322, 3, 4, 15gpg5nbgrvtx03starlem1 48049 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽 ∧ (2nd𝑋) ∈ (0..^𝑁)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
3324, 25, 31, 32syl3anc 1373 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
34 simpll 766 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 ∈ (ℤ‘4))
35 elfzoelz 13626 . . . . . . 7 ((2nd𝑋) ∈ (0..^𝑁) → (2nd𝑋) ∈ ℤ)
3628, 30, 353syl 18 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (2nd𝑋) ∈ ℤ)
372, 3, 4, 15gpg5nbgrvtx03starlem2 48050 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽 ∧ (2nd𝑋) ∈ ℤ) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
3834, 25, 36, 37syl3anc 1373 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
39 opex 5426 . . . . . 6 ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ V
40 opex 5426 . . . . . 6 ⟨1, (2nd𝑋)⟩ ∈ V
41 opex 5426 . . . . . 6 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ V
42 preq2 4700 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
43 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
4442, 43syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
45 preq2 4700 . . . . . . 7 (𝑦 = ⟨1, (2nd𝑋)⟩ → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩})
46 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
4745, 46syl 17 . . . . . 6 (𝑦 = ⟨1, (2nd𝑋)⟩ → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
48 preq2 4700 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
49 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
5048, 49syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
5139, 40, 41, 44, 47, 50raltp 4671 . . . . 5 (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
5222, 33, 38, 51syl3anbrc 1344 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
53 prcom 4698 . . . . . . 7 {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩}
54 neleq1 3036 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
5553, 54ax-mp 5 . . . . . 6 ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
5633, 55sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸)
57 eqid 2730 . . . . . . 7 ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩
5815usgredgne 29139 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸) → ⟨1, (2nd𝑋)⟩ ≠ ⟨1, (2nd𝑋)⟩)
5958neneqd 2931 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸) → ¬ ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩)
6059ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩))
6114, 60syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨1, (2nd𝑋)⟩ = ⟨1, (2nd𝑋)⟩))
6257, 61mt2i 137 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ¬ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸)
63 df-nel 3031 . . . . . 6 ({⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ↔ ¬ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∈ 𝐸)
6462, 63sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
652, 3, 4, 15gpg5nbgrvtx03starlem3 48051 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽 ∧ (2nd𝑋) ∈ (0..^𝑁)) → {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
6624, 25, 31, 65syl3anc 1373 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
67 preq2 4700 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
68 neleq1 3036 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
6967, 68syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
70 preq2 4700 . . . . . . 7 (𝑦 = ⟨1, (2nd𝑋)⟩ → {⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩})
71 neleq1 3036 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
7270, 71syl 17 . . . . . 6 (𝑦 = ⟨1, (2nd𝑋)⟩ → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
73 preq2 4700 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
74 neleq1 3036 . . . . . . 7 ({⟨1, (2nd𝑋)⟩, 𝑦} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
7573, 74syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
7639, 40, 41, 69, 72, 75raltp 4671 . . . . 5 (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨1, (2nd𝑋)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
7756, 64, 66, 76syl3anbrc 1344 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸)
78 prcom 4698 . . . . . . 7 {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}
79 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
8078, 79ax-mp 5 . . . . . 6 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
8138, 80sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸)
82 prcom 4698 . . . . . . 7 {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}
83 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} = {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
8482, 83ax-mp 5 . . . . . 6 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
8566, 84sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸)
86 eqid 2730 . . . . . . 7 ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩
8715usgredgne 29139 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸) → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ≠ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
8887neneqd 2931 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩)
8988ex 412 . . . . . . . 8 (𝐺 ∈ USGraph → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
9014, 89syl 17 . . . . . . 7 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩))
9186, 90mt2i 137 . . . . . 6 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ¬ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸)
92 df-nel 3031 . . . . . 6 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∈ 𝐸)
9391, 92sylibr 234 . . . . 5 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸)
94 preq2 4700 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩})
95 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
9694, 95syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸))
97 preq2 4700 . . . . . . 7 (𝑦 = ⟨1, (2nd𝑋)⟩ → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩})
98 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
9997, 98syl 17 . . . . . 6 (𝑦 = ⟨1, (2nd𝑋)⟩ → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸))
100 preq2 4700 . . . . . . 7 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
101 neleq1 3036 . . . . . . 7 ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
102100, 101syl 17 . . . . . 6 (𝑦 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
10339, 40, 41, 96, 99, 102raltp 4671 . . . . 5 (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} ∉ 𝐸))
10481, 85, 93, 103syl3anbrc 1344 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
105 preq1 4699 . . . . . . 7 (𝑥 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦})
106 neleq1 3036 . . . . . . 7 ({𝑥, 𝑦} = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
107105, 106syl 17 . . . . . 6 (𝑥 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
108107ralbidv 3157 . . . . 5 (𝑥 = ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
109 preq1 4699 . . . . . . 7 (𝑥 = ⟨1, (2nd𝑋)⟩ → {𝑥, 𝑦} = {⟨1, (2nd𝑋)⟩, 𝑦})
110 neleq1 3036 . . . . . . 7 ({𝑥, 𝑦} = {⟨1, (2nd𝑋)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
111109, 110syl 17 . . . . . 6 (𝑥 = ⟨1, (2nd𝑋)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
112111ralbidv 3157 . . . . 5 (𝑥 = ⟨1, (2nd𝑋)⟩ → (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
113 preq1 4699 . . . . . . 7 (𝑥 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦})
114 neleq1 3036 . . . . . . 7 ({𝑥, 𝑦} = {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
115113, 114syl 17 . . . . . 6 (𝑥 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
116115ralbidv 3157 . . . . 5 (𝑥 = ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
11739, 40, 41, 108, 112, 116raltp 4671 . . . 4 (∀𝑥 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ (∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨1, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
11852, 77, 104, 117syl3anbrc 1344 . . 3 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑥 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸)
1192, 3, 4, 5gpgnbgrvtx0 48055 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
1201, 119sylanl1 680 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑈 = {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩})
121120raleqdv 3301 . . . 4 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (∀𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
122120, 121raleqbidvv 3309 . . 3 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑥 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩}∀𝑦 ∈ {⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
123118, 122mpbird 257 . 2 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)
1247, 123jca 511 1 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnel 3030  wral 3045  {cpr 4593  {ctp 4595  cop 4597  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  0cc0 11074  1c1 11075   + caddc 11077  cmin 11411   / cdiv 11841  2c2 12242  3c3 12243  4c4 12244  cz 12535  cuz 12799  ..^cfzo 13621  cceil 13759   mod cmo 13837  chash 14301  Vtxcvtx 28929  Edgcedg 28980  USGraphcusgr 29082   NeighbVtx cnbgr 29265   gPetersenGr cgpg 48021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-ceil 13761  df-mod 13838  df-hash 14302  df-dvds 16229  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28922  df-vtx 28931  df-iedg 28932  df-edg 28981  df-upgr 29015  df-umgr 29016  df-usgr 29084  df-nbgr 29266  df-gpg 48022
This theorem is referenced by:  gpg5nbgr3star  48062
  Copyright terms: Public domain W3C validator