MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coecjOLD Structured version   Visualization version   GIF version

Theorem coecjOLD 26223
Description: Obsolete version of coecj 26221 as of 22-Sep-2025. Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
plycjOLD.1 𝑁 = (deg‘𝐹)
plycjOLD.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
coecjOLD.3 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coecjOLD (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))

Proof of Theorem coecjOLD
Dummy variables 𝑥 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycjOLD.1 . . 3 𝑁 = (deg‘𝐹)
2 plycjOLD.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
3 cjcl 15111 . . . 4 (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ)
43adantl 481 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ)
5 plyssc 26142 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
65sseli 3952 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
71, 2, 4, 6plycjOLD 26222 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
8 dgrcl 26175 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
91, 8eqeltrid 2837 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
10 cjf 15110 . . 3 ∗:ℂ⟶ℂ
11 coecjOLD.3 . . . 4 𝐴 = (coeff‘𝐹)
1211coef3 26174 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
13 fco 6726 . . 3 ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
1410, 12, 13sylancr 587 . 2 (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
15 fvco3 6974 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
1612, 15sylan 580 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
17 cj0 15164 . . . . . . . . . 10 (∗‘0) = 0
1817eqcomi 2743 . . . . . . . . 9 0 = (∗‘0)
1918a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0))
2016, 19eqeq12d 2750 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴𝑘)) = (∗‘0)))
2112ffvelcdmda 7070 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
22 0cnd 11220 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ)
23 cj11 15168 . . . . . . . 8 (((𝐴𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2421, 22, 23syl2anc 584 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2520, 24bitrd 279 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴𝑘) = 0))
2625necon3bid 2975 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
2711, 1dgrub2 26177 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
28 plyco0 26134 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
299, 12, 28syl2anc 584 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
3027, 29mpbid 232 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3130r19.21bi 3232 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3226, 31sylbid 240 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁))
3332ralrimiva 3130 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁))
34 plyco0 26134 . . . 4 ((𝑁 ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁)))
359, 14, 34syl2anc 584 . . 3 (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁)))
3633, 35mpbird 257 . 2 (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0})
371, 2, 11plycjlem 26219 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
387, 9, 14, 36, 37coeeq 26169 1 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  {csn 4599   class class class wbr 5116  cima 5654  ccom 5655  wf 6523  cfv 6527  (class class class)co 7399  cc 11119  0cc0 11121  1c1 11122   + caddc 11124  cle 11262  0cn0 12493  cuz 12844  ccj 15102  Polycply 26126  coeffccoe 26128  degcdgr 26129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-inf2 9647  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-inf 9449  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-fz 13514  df-fzo 13661  df-fl 13798  df-seq 14009  df-exp 14069  df-hash 14337  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-clim 15491  df-rlim 15492  df-sum 15690  df-0p 25608  df-ply 26130  df-coe 26132  df-dgr 26133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator