| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coecjOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of coecj 26254 as of 22-Sep-2025. Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| plycjOLD.1 | ⊢ 𝑁 = (deg‘𝐹) |
| plycjOLD.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
| coecjOLD.3 | ⊢ 𝐴 = (coeff‘𝐹) |
| Ref | Expression |
|---|---|
| coecjOLD | ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycjOLD.1 | . . 3 ⊢ 𝑁 = (deg‘𝐹) | |
| 2 | plycjOLD.2 | . . 3 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
| 3 | cjcl 15126 | . . . 4 ⊢ (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ) |
| 5 | plyssc 26175 | . . . 4 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
| 6 | 5 | sseli 3959 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
| 7 | 1, 2, 4, 6 | plycjOLD 26255 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ)) |
| 8 | dgrcl 26208 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 9 | 1, 8 | eqeltrid 2837 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0) |
| 10 | cjf 15125 | . . 3 ⊢ ∗:ℂ⟶ℂ | |
| 11 | coecjOLD.3 | . . . 4 ⊢ 𝐴 = (coeff‘𝐹) | |
| 12 | 11 | coef3 26207 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
| 13 | fco 6740 | . . 3 ⊢ ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ) | |
| 14 | 10, 12, 13 | sylancr 587 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ) |
| 15 | fvco3 6988 | . . . . . . . . 9 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) | |
| 16 | 12, 15 | sylan 580 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴‘𝑘))) |
| 17 | cj0 15179 | . . . . . . . . . 10 ⊢ (∗‘0) = 0 | |
| 18 | 17 | eqcomi 2743 | . . . . . . . . 9 ⊢ 0 = (∗‘0) |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0)) |
| 20 | 16, 19 | eqeq12d 2750 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴‘𝑘)) = (∗‘0))) |
| 21 | 12 | ffvelcdmda 7084 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 22 | 0cnd 11236 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ) | |
| 23 | cj11 15183 | . . . . . . . 8 ⊢ (((𝐴‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) | |
| 24 | 21, 22, 23 | syl2anc 584 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴‘𝑘)) = (∗‘0) ↔ (𝐴‘𝑘) = 0)) |
| 25 | 20, 24 | bitrd 279 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴‘𝑘) = 0)) |
| 26 | 25 | necon3bid 2975 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴‘𝑘) ≠ 0)) |
| 27 | 11, 1 | dgrub2 26210 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| 28 | plyco0 26167 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | |
| 29 | 9, 12, 28 | syl2anc 584 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
| 30 | 27, 29 | mpbid 232 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 31 | 30 | r19.21bi 3237 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 32 | 26, 31 | sylbid 240 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 33 | 32 | ralrimiva 3133 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 34 | plyco0 26167 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | |
| 35 | 9, 14, 34 | syl2anc 584 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) |
| 36 | 33, 35 | mpbird 257 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| 37 | 1, 2, 11 | plycjlem 26252 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧↑𝑘)))) |
| 38 | 7, 9, 14, 36, 37 | coeeq 26202 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 {csn 4606 class class class wbr 5123 “ cima 5668 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 + caddc 11140 ≤ cle 11278 ℕ0cn0 12509 ℤ≥cuz 12860 ∗ccj 15117 Polycply 26159 coeffccoe 26161 degcdgr 26162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-clim 15506 df-rlim 15507 df-sum 15705 df-0p 25641 df-ply 26163 df-coe 26165 df-dgr 26166 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |