| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plycjOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of plycj 26159 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| plycjOLD.1 | ⊢ 𝑁 = (deg‘𝐹) |
| plycjOLD.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
| plycjOLD.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) |
| plycjOLD.4 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| Ref | Expression |
|---|---|
| plycjOLD | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycjOLD.4 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | plycjOLD.1 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 3 | plycjOLD.2 | . . . . 5 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 5 | 2, 3, 4 | plycjlem 26158 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 7 | plybss 26075 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 0cnd 11143 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 10 | 9 | snssd 4769 | . . . . 5 ⊢ (𝜑 → {0} ⊆ ℂ) |
| 11 | 8, 10 | unssd 4151 | . . . 4 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
| 12 | dgrcl 26114 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (deg‘𝐹) ∈ ℕ0) |
| 14 | 2, 13 | eqeltrid 2832 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 15 | 4 | coef 26111 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 17 | elfznn0 13557 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 18 | fvco3 6942 | . . . . . 6 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) | |
| 19 | 16, 17, 18 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) |
| 20 | ffvelcdm 7035 | . . . . . . 7 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 21 | 16, 17, 20 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 22 | plycjOLD.3 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) | |
| 23 | 22 | ralrimiva 3125 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆) |
| 24 | fveq2 6840 | . . . . . . . . . . . 12 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘))) | |
| 25 | 24 | eleq1d 2813 | . . . . . . . . . . 11 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 26 | 25 | rspccv 3582 | . . . . . . . . . 10 ⊢ (∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 27 | 23, 26 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 28 | elsni 4602 | . . . . . . . . . . . . 13 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0) | |
| 29 | 28 | fveq2d 6844 | . . . . . . . . . . . 12 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0)) |
| 30 | cj0 15100 | . . . . . . . . . . . 12 ⊢ (∗‘0) = 0 | |
| 31 | 29, 30 | eqtrdi 2780 | . . . . . . . . . . 11 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 32 | fvex 6853 | . . . . . . . . . . . 12 ⊢ (∗‘((coeff‘𝐹)‘𝑘)) ∈ V | |
| 33 | 32 | elsn 4600 | . . . . . . . . . . 11 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 34 | 31, 33 | sylibr 234 | . . . . . . . . . 10 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}) |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) |
| 36 | 27, 35 | orim12d 966 | . . . . . . . 8 ⊢ (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))) |
| 37 | elun 4112 | . . . . . . . 8 ⊢ (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0})) | |
| 38 | elun 4112 | . . . . . . . 8 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) | |
| 39 | 36, 37, 38 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 40 | 39 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 41 | 21, 40 | mpd 15 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})) |
| 42 | 19, 41 | eqeltrd 2828 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0})) |
| 43 | 11, 14, 42 | elplyd 26083 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 44 | 6, 43 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Poly‘(𝑆 ∪ {0}))) |
| 45 | plyun0 26078 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
| 46 | 44, 45 | eleqtrdi 2838 | 1 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3909 ⊆ wss 3911 {csn 4585 ↦ cmpt 5183 ∘ ccom 5635 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 · cmul 11049 ℕ0cn0 12418 ...cfz 13444 ↑cexp 14002 ∗ccj 15038 Σcsu 15628 Polycply 26065 coeffccoe 26067 degcdgr 26068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-0p 25547 df-ply 26069 df-coe 26071 df-dgr 26072 |
| This theorem is referenced by: coecjOLD 26162 |
| Copyright terms: Public domain | W3C validator |