MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycjOLD Structured version   Visualization version   GIF version

Theorem plycjOLD 26191
Description: Obsolete version of plycj 26189 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
plycjOLD.1 𝑁 = (deg‘𝐹)
plycjOLD.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjOLD.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycjOLD.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycjOLD (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝜑,𝑥   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycjOLD
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycjOLD.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plycjOLD.1 . . . . 5 𝑁 = (deg‘𝐹)
3 plycjOLD.2 . . . . 5 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
4 eqid 2730 . . . . 5 (coeff‘𝐹) = (coeff‘𝐹)
52, 3, 4plycjlem 26188 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
61, 5syl 17 . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
7 plybss 26105 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
81, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
9 0cnd 11173 . . . . . 6 (𝜑 → 0 ∈ ℂ)
109snssd 4775 . . . . 5 (𝜑 → {0} ⊆ ℂ)
118, 10unssd 4157 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
12 dgrcl 26144 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
131, 12syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
142, 13eqeltrid 2833 . . . 4 (𝜑𝑁 ∈ ℕ0)
154coef 26141 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
161, 15syl 17 . . . . . 6 (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
17 elfznn0 13587 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
18 fvco3 6962 . . . . . 6 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
1916, 17, 18syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
20 ffvelcdm 7055 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
2116, 17, 20syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
22 plycjOLD.3 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
2322ralrimiva 3126 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
24 fveq2 6860 . . . . . . . . . . . 12 (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘)))
2524eleq1d 2814 . . . . . . . . . . 11 (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2625rspccv 3588 . . . . . . . . . 10 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2723, 26syl 17 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
28 elsni 4608 . . . . . . . . . . . . 13 (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0)
2928fveq2d 6864 . . . . . . . . . . . 12 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0))
30 cj0 15130 . . . . . . . . . . . 12 (∗‘0) = 0
3129, 30eqtrdi 2781 . . . . . . . . . . 11 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0)
32 fvex 6873 . . . . . . . . . . . 12 (∗‘((coeff‘𝐹)‘𝑘)) ∈ V
3332elsn 4606 . . . . . . . . . . 11 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0)
3431, 33sylibr 234 . . . . . . . . . 10 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})
3534a1i 11 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3627, 35orim12d 966 . . . . . . . 8 (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})))
37 elun 4118 . . . . . . . 8 (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}))
38 elun 4118 . . . . . . . 8 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3936, 37, 383imtr4g 296 . . . . . . 7 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4039adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4121, 40mpd 15 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))
4219, 41eqeltrd 2829 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0}))
4311, 14, 42elplyd 26113 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
446, 43eqeltrd 2829 . 2 (𝜑𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
45 plyun0 26108 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4644, 45eleqtrdi 2839 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  cun 3914  wss 3916  {csn 4591  cmpt 5190  ccom 5644  wf 6509  cfv 6513  (class class class)co 7389  cc 11072  0cc0 11074   · cmul 11079  0cn0 12448  ...cfz 13474  cexp 14032  ccj 15068  Σcsu 15658  Polycply 26095  coeffccoe 26097  degcdgr 26098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-rlim 15461  df-sum 15659  df-0p 25577  df-ply 26099  df-coe 26101  df-dgr 26102
This theorem is referenced by:  coecjOLD  26192
  Copyright terms: Public domain W3C validator