| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plycjOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of plycj 26205 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| plycjOLD.1 | ⊢ 𝑁 = (deg‘𝐹) |
| plycjOLD.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
| plycjOLD.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) |
| plycjOLD.4 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| Ref | Expression |
|---|---|
| plycjOLD | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycjOLD.4 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | plycjOLD.1 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 3 | plycjOLD.2 | . . . . 5 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 5 | 2, 3, 4 | plycjlem 26204 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 7 | plybss 26121 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 0cnd 11100 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 10 | 9 | snssd 4756 | . . . . 5 ⊢ (𝜑 → {0} ⊆ ℂ) |
| 11 | 8, 10 | unssd 4137 | . . . 4 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
| 12 | dgrcl 26160 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (deg‘𝐹) ∈ ℕ0) |
| 14 | 2, 13 | eqeltrid 2835 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 15 | 4 | coef 26157 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 17 | elfznn0 13515 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 18 | fvco3 6916 | . . . . . 6 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) | |
| 19 | 16, 17, 18 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) |
| 20 | ffvelcdm 7009 | . . . . . . 7 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 21 | 16, 17, 20 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 22 | plycjOLD.3 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) | |
| 23 | 22 | ralrimiva 3124 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆) |
| 24 | fveq2 6817 | . . . . . . . . . . . 12 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘))) | |
| 25 | 24 | eleq1d 2816 | . . . . . . . . . . 11 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 26 | 25 | rspccv 3569 | . . . . . . . . . 10 ⊢ (∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 27 | 23, 26 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 28 | elsni 4588 | . . . . . . . . . . . . 13 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0) | |
| 29 | 28 | fveq2d 6821 | . . . . . . . . . . . 12 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0)) |
| 30 | cj0 15060 | . . . . . . . . . . . 12 ⊢ (∗‘0) = 0 | |
| 31 | 29, 30 | eqtrdi 2782 | . . . . . . . . . . 11 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 32 | fvex 6830 | . . . . . . . . . . . 12 ⊢ (∗‘((coeff‘𝐹)‘𝑘)) ∈ V | |
| 33 | 32 | elsn 4586 | . . . . . . . . . . 11 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 34 | 31, 33 | sylibr 234 | . . . . . . . . . 10 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}) |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) |
| 36 | 27, 35 | orim12d 966 | . . . . . . . 8 ⊢ (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))) |
| 37 | elun 4098 | . . . . . . . 8 ⊢ (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0})) | |
| 38 | elun 4098 | . . . . . . . 8 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) | |
| 39 | 36, 37, 38 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 40 | 39 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 41 | 21, 40 | mpd 15 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})) |
| 42 | 19, 41 | eqeltrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0})) |
| 43 | 11, 14, 42 | elplyd 26129 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 44 | 6, 43 | eqeltrd 2831 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Poly‘(𝑆 ∪ {0}))) |
| 45 | plyun0 26124 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
| 46 | 44, 45 | eleqtrdi 2841 | 1 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∪ cun 3895 ⊆ wss 3897 {csn 4571 ↦ cmpt 5167 ∘ ccom 5615 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 · cmul 11006 ℕ0cn0 12376 ...cfz 13402 ↑cexp 13963 ∗ccj 14998 Σcsu 15588 Polycply 26111 coeffccoe 26113 degcdgr 26114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-0p 25593 df-ply 26115 df-coe 26117 df-dgr 26118 |
| This theorem is referenced by: coecjOLD 26208 |
| Copyright terms: Public domain | W3C validator |