![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plycjOLD | Structured version Visualization version GIF version |
Description: Obsolete version of plycj 26313 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
plycjOLD.1 | ⊢ 𝑁 = (deg‘𝐹) |
plycjOLD.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
plycjOLD.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) |
plycjOLD.4 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
Ref | Expression |
---|---|
plycjOLD | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plycjOLD.4 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
2 | plycjOLD.1 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
3 | plycjOLD.2 | . . . . 5 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
4 | eqid 2733 | . . . . 5 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
5 | 2, 3, 4 | plycjlem 26312 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
7 | plybss 26229 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
9 | 0cnd 11245 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
10 | 9 | snssd 4816 | . . . . 5 ⊢ (𝜑 → {0} ⊆ ℂ) |
11 | 8, 10 | unssd 4202 | . . . 4 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
12 | dgrcl 26268 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (deg‘𝐹) ∈ ℕ0) |
14 | 2, 13 | eqeltrid 2841 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
15 | 4 | coef 26265 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
17 | elfznn0 13647 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
18 | fvco3 7002 | . . . . . 6 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) | |
19 | 16, 17, 18 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) |
20 | ffvelcdm 7095 | . . . . . . 7 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) | |
21 | 16, 17, 20 | syl2an 595 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) |
22 | plycjOLD.3 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) | |
23 | 22 | ralrimiva 3142 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆) |
24 | fveq2 6901 | . . . . . . . . . . . 12 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘))) | |
25 | 24 | eleq1d 2822 | . . . . . . . . . . 11 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
26 | 25 | rspccv 3619 | . . . . . . . . . 10 ⊢ (∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
27 | 23, 26 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
28 | elsni 4647 | . . . . . . . . . . . . 13 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0) | |
29 | 28 | fveq2d 6905 | . . . . . . . . . . . 12 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0)) |
30 | cj0 15183 | . . . . . . . . . . . 12 ⊢ (∗‘0) = 0 | |
31 | 29, 30 | eqtrdi 2789 | . . . . . . . . . . 11 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
32 | fvex 6914 | . . . . . . . . . . . 12 ⊢ (∗‘((coeff‘𝐹)‘𝑘)) ∈ V | |
33 | 32 | elsn 4645 | . . . . . . . . . . 11 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
34 | 31, 33 | sylibr 234 | . . . . . . . . . 10 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}) |
35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) |
36 | 27, 35 | orim12d 965 | . . . . . . . 8 ⊢ (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))) |
37 | elun 4163 | . . . . . . . 8 ⊢ (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0})) | |
38 | elun 4163 | . . . . . . . 8 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) | |
39 | 36, 37, 38 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
40 | 39 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
41 | 21, 40 | mpd 15 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})) |
42 | 19, 41 | eqeltrd 2837 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0})) |
43 | 11, 14, 42 | elplyd 26237 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
44 | 6, 43 | eqeltrd 2837 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Poly‘(𝑆 ∪ {0}))) |
45 | plyun0 26232 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
46 | 44, 45 | eleqtrdi 2847 | 1 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1535 ∈ wcel 2104 ∀wral 3057 ∪ cun 3961 ⊆ wss 3963 {csn 4630 ↦ cmpt 5232 ∘ ccom 5687 ⟶wf 6554 ‘cfv 6558 (class class class)co 7425 ℂcc 11144 0cc0 11146 · cmul 11151 ℕ0cn0 12517 ...cfz 13537 ↑cexp 14088 ∗ccj 15121 Σcsu 15708 Polycply 26219 coeffccoe 26221 degcdgr 26222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-int 4954 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-isom 6567 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-of 7691 df-om 7881 df-1st 8007 df-2nd 8008 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-er 8738 df-map 8861 df-pm 8862 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-div 11912 df-nn 12258 df-2 12320 df-3 12321 df-n0 12518 df-z 12605 df-uz 12870 df-rp 13026 df-fz 13538 df-fzo 13682 df-fl 13818 df-seq 14029 df-exp 14089 df-hash 14356 df-cj 15124 df-re 15125 df-im 15126 df-sqrt 15260 df-abs 15261 df-clim 15510 df-rlim 15511 df-sum 15709 df-0p 25700 df-ply 26223 df-coe 26225 df-dgr 26226 |
This theorem is referenced by: coecjOLD 26316 |
Copyright terms: Public domain | W3C validator |