| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plycjOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of plycj 26254 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| plycjOLD.1 | ⊢ 𝑁 = (deg‘𝐹) |
| plycjOLD.2 | ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) |
| plycjOLD.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) |
| plycjOLD.4 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| Ref | Expression |
|---|---|
| plycjOLD | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycjOLD.4 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | plycjOLD.1 | . . . . 5 ⊢ 𝑁 = (deg‘𝐹) | |
| 3 | plycjOLD.2 | . . . . 5 ⊢ 𝐺 = ((∗ ∘ 𝐹) ∘ ∗) | |
| 4 | eqid 2734 | . . . . 5 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 5 | 2, 3, 4 | plycjlem 26253 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 7 | plybss 26170 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | 0cnd 11236 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 10 | 9 | snssd 4789 | . . . . 5 ⊢ (𝜑 → {0} ⊆ ℂ) |
| 11 | 8, 10 | unssd 4172 | . . . 4 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
| 12 | dgrcl 26209 | . . . . . 6 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → (deg‘𝐹) ∈ ℕ0) |
| 14 | 2, 13 | eqeltrid 2837 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 15 | 4 | coef 26206 | . . . . . . 7 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 16 | 1, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 17 | elfznn0 13642 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 18 | fvco3 6988 | . . . . . 6 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) | |
| 19 | 16, 17, 18 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) |
| 20 | ffvelcdm 7081 | . . . . . . 7 ⊢ (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 21 | 16, 17, 20 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 22 | plycjOLD.3 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) | |
| 23 | 22 | ralrimiva 3133 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆) |
| 24 | fveq2 6886 | . . . . . . . . . . . 12 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘))) | |
| 25 | 24 | eleq1d 2818 | . . . . . . . . . . 11 ⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 26 | 25 | rspccv 3602 | . . . . . . . . . 10 ⊢ (∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 27 | 23, 26 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 28 | elsni 4623 | . . . . . . . . . . . . 13 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0) | |
| 29 | 28 | fveq2d 6890 | . . . . . . . . . . . 12 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0)) |
| 30 | cj0 15180 | . . . . . . . . . . . 12 ⊢ (∗‘0) = 0 | |
| 31 | 29, 30 | eqtrdi 2785 | . . . . . . . . . . 11 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 32 | fvex 6899 | . . . . . . . . . . . 12 ⊢ (∗‘((coeff‘𝐹)‘𝑘)) ∈ V | |
| 33 | 32 | elsn 4621 | . . . . . . . . . . 11 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 34 | 31, 33 | sylibr 234 | . . . . . . . . . 10 ⊢ (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}) |
| 35 | 34 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) |
| 36 | 27, 35 | orim12d 966 | . . . . . . . 8 ⊢ (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))) |
| 37 | elun 4133 | . . . . . . . 8 ⊢ (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0})) | |
| 38 | elun 4133 | . . . . . . . 8 ⊢ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) | |
| 39 | 36, 37, 38 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 40 | 39 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 41 | 21, 40 | mpd 15 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})) |
| 42 | 19, 41 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0})) |
| 43 | 11, 14, 42 | elplyd 26178 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 44 | 6, 43 | eqeltrd 2833 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Poly‘(𝑆 ∪ {0}))) |
| 45 | plyun0 26173 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
| 46 | 44, 45 | eleqtrdi 2843 | 1 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∪ cun 3929 ⊆ wss 3931 {csn 4606 ↦ cmpt 5205 ∘ ccom 5669 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 · cmul 11142 ℕ0cn0 12509 ...cfz 13529 ↑cexp 14084 ∗ccj 15118 Σcsu 15705 Polycply 26160 coeffccoe 26162 degcdgr 26163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-rlim 15508 df-sum 15706 df-0p 25642 df-ply 26164 df-coe 26166 df-dgr 26167 |
| This theorem is referenced by: coecjOLD 26257 |
| Copyright terms: Public domain | W3C validator |