MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycjOLD Structured version   Visualization version   GIF version

Theorem plycjOLD 26256
Description: Obsolete version of plycj 26254 as of 22-Sep-2025. The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
plycjOLD.1 𝑁 = (deg‘𝐹)
plycjOLD.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycjOLD.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycjOLD.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycjOLD (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝜑,𝑥   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycjOLD
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycjOLD.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plycjOLD.1 . . . . 5 𝑁 = (deg‘𝐹)
3 plycjOLD.2 . . . . 5 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
4 eqid 2734 . . . . 5 (coeff‘𝐹) = (coeff‘𝐹)
52, 3, 4plycjlem 26253 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
61, 5syl 17 . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
7 plybss 26170 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
81, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
9 0cnd 11236 . . . . . 6 (𝜑 → 0 ∈ ℂ)
109snssd 4789 . . . . 5 (𝜑 → {0} ⊆ ℂ)
118, 10unssd 4172 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
12 dgrcl 26209 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
131, 12syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
142, 13eqeltrid 2837 . . . 4 (𝜑𝑁 ∈ ℕ0)
154coef 26206 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
161, 15syl 17 . . . . . 6 (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
17 elfznn0 13642 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
18 fvco3 6988 . . . . . 6 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
1916, 17, 18syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
20 ffvelcdm 7081 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
2116, 17, 20syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
22 plycjOLD.3 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
2322ralrimiva 3133 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
24 fveq2 6886 . . . . . . . . . . . 12 (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘)))
2524eleq1d 2818 . . . . . . . . . . 11 (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2625rspccv 3602 . . . . . . . . . 10 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2723, 26syl 17 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
28 elsni 4623 . . . . . . . . . . . . 13 (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0)
2928fveq2d 6890 . . . . . . . . . . . 12 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0))
30 cj0 15180 . . . . . . . . . . . 12 (∗‘0) = 0
3129, 30eqtrdi 2785 . . . . . . . . . . 11 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0)
32 fvex 6899 . . . . . . . . . . . 12 (∗‘((coeff‘𝐹)‘𝑘)) ∈ V
3332elsn 4621 . . . . . . . . . . 11 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0)
3431, 33sylibr 234 . . . . . . . . . 10 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})
3534a1i 11 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3627, 35orim12d 966 . . . . . . . 8 (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})))
37 elun 4133 . . . . . . . 8 (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}))
38 elun 4133 . . . . . . . 8 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3936, 37, 383imtr4g 296 . . . . . . 7 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4039adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4121, 40mpd 15 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))
4219, 41eqeltrd 2833 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0}))
4311, 14, 42elplyd 26178 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
446, 43eqeltrd 2833 . 2 (𝜑𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
45 plyun0 26173 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4644, 45eleqtrdi 2843 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  cun 3929  wss 3931  {csn 4606  cmpt 5205  ccom 5669  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137   · cmul 11142  0cn0 12509  ...cfz 13529  cexp 14084  ccj 15118  Σcsu 15705  Polycply 26160  coeffccoe 26162  degcdgr 26163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-0p 25642  df-ply 26164  df-coe 26166  df-dgr 26167
This theorem is referenced by:  coecjOLD  26257
  Copyright terms: Public domain W3C validator