| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgmppw | Structured version Visualization version GIF version | ||
| Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.) |
| Ref | Expression |
|---|---|
| sgmppw | ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
| 3 | prmnn 16585 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ) |
| 5 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 6 | 4, 5 | nnexpcld 14152 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℕ) |
| 7 | sgmval 27079 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃↑𝑁) ∈ ℕ) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) | |
| 8 | 1, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) |
| 9 | oveq1 7353 | . . 3 ⊢ (𝑛 = (𝑃↑𝑘) → (𝑛↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) | |
| 10 | fzfid 13880 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin) | |
| 11 | eqid 2731 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) = (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) | |
| 12 | 11 | dvdsppwf1o 27123 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
| 13 | 2, 5, 12 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
| 14 | oveq2 7354 | . . . . 5 ⊢ (𝑖 = 𝑘 → (𝑃↑𝑖) = (𝑃↑𝑘)) | |
| 15 | ovex 7379 | . . . . 5 ⊢ (𝑃↑𝑘) ∈ V | |
| 16 | 14, 11, 15 | fvmpt 6929 | . . . 4 ⊢ (𝑘 ∈ (0...𝑁) → ((𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖))‘𝑘) = (𝑃↑𝑘)) |
| 17 | 16 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖))‘𝑘) = (𝑃↑𝑘)) |
| 18 | elrabi 3638 | . . . . 5 ⊢ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} → 𝑛 ∈ ℕ) | |
| 19 | 18 | nncnd 12141 | . . . 4 ⊢ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} → 𝑛 ∈ ℂ) |
| 20 | cxpcl 26610 | . . . 4 ⊢ ((𝑛 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑛↑𝑐𝐴) ∈ ℂ) | |
| 21 | 19, 1, 20 | syl2anr 597 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → (𝑛↑𝑐𝐴) ∈ ℂ) |
| 22 | 9, 10, 13, 17, 21 | fsumf1o 15630 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴)) |
| 23 | elfznn0 13520 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 24 | 23 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 25 | 24 | nn0cnd 12444 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ) |
| 26 | 1 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| 27 | 25, 26 | mulcomd 11133 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 · 𝐴) = (𝐴 · 𝑘)) |
| 28 | 27 | oveq2d 7362 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = (𝑃↑𝑐(𝐴 · 𝑘))) |
| 29 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℕ) |
| 30 | 29 | nnrpd 12932 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℝ+) |
| 31 | 24 | nn0red 12443 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ) |
| 32 | 30, 31, 26 | cxpmuld 26673 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑐𝑘)↑𝑐𝐴)) |
| 33 | 29 | nncnd 12141 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℂ) |
| 34 | cxpexp 26604 | . . . . . . 7 ⊢ ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) | |
| 35 | 33, 24, 34 | syl2anc 584 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) |
| 36 | 35 | oveq1d 7361 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑐𝑘)↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) |
| 37 | 32, 36 | eqtrd 2766 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑘)↑𝑐𝐴)) |
| 38 | 33, 26, 24 | cxpmul2d 26645 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝐴 · 𝑘)) = ((𝑃↑𝑐𝐴)↑𝑘)) |
| 39 | 28, 37, 38 | 3eqtr3d 2774 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑘)↑𝑐𝐴) = ((𝑃↑𝑐𝐴)↑𝑘)) |
| 40 | 39 | sumeq2dv 15609 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| 41 | 8, 22, 40 | 3eqtrd 2770 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5089 ↦ cmpt 5170 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 · cmul 11011 ℕcn 12125 ℕ0cn0 12381 ...cfz 13407 ↑cexp 13968 Σcsu 15593 ∥ cdvds 16163 ℙcprime 16582 ↑𝑐ccxp 26491 σ csgm 27033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-dvds 16164 df-gcd 16406 df-prm 16583 df-pc 16749 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 df-cxp 26493 df-sgm 27039 |
| This theorem is referenced by: 1sgmprm 27137 1sgm2ppw 27138 |
| Copyright terms: Public domain | W3C validator |