Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgmppw | Structured version Visualization version GIF version |
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
sgmppw | ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
2 | simp2 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
3 | prmnn 16307 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ) |
5 | simp3 1136 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
6 | 4, 5 | nnexpcld 13888 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℕ) |
7 | sgmval 26196 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃↑𝑁) ∈ ℕ) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) | |
8 | 1, 6, 7 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) |
9 | oveq1 7262 | . . 3 ⊢ (𝑛 = (𝑃↑𝑘) → (𝑛↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) | |
10 | fzfid 13621 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin) | |
11 | eqid 2738 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) = (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) | |
12 | 11 | dvdsppwf1o 26240 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
13 | 2, 5, 12 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
14 | oveq2 7263 | . . . . 5 ⊢ (𝑖 = 𝑘 → (𝑃↑𝑖) = (𝑃↑𝑘)) | |
15 | ovex 7288 | . . . . 5 ⊢ (𝑃↑𝑘) ∈ V | |
16 | 14, 11, 15 | fvmpt 6857 | . . . 4 ⊢ (𝑘 ∈ (0...𝑁) → ((𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖))‘𝑘) = (𝑃↑𝑘)) |
17 | 16 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖))‘𝑘) = (𝑃↑𝑘)) |
18 | elrabi 3611 | . . . . 5 ⊢ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} → 𝑛 ∈ ℕ) | |
19 | 18 | nncnd 11919 | . . . 4 ⊢ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} → 𝑛 ∈ ℂ) |
20 | cxpcl 25734 | . . . 4 ⊢ ((𝑛 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑛↑𝑐𝐴) ∈ ℂ) | |
21 | 19, 1, 20 | syl2anr 596 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → (𝑛↑𝑐𝐴) ∈ ℂ) |
22 | 9, 10, 13, 17, 21 | fsumf1o 15363 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴)) |
23 | elfznn0 13278 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
24 | 23 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
25 | 24 | nn0cnd 12225 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ) |
26 | 1 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
27 | 25, 26 | mulcomd 10927 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 · 𝐴) = (𝐴 · 𝑘)) |
28 | 27 | oveq2d 7271 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = (𝑃↑𝑐(𝐴 · 𝑘))) |
29 | 4 | adantr 480 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℕ) |
30 | 29 | nnrpd 12699 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℝ+) |
31 | 24 | nn0red 12224 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ) |
32 | 30, 31, 26 | cxpmuld 25796 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑐𝑘)↑𝑐𝐴)) |
33 | 29 | nncnd 11919 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℂ) |
34 | cxpexp 25728 | . . . . . . 7 ⊢ ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) | |
35 | 33, 24, 34 | syl2anc 583 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) |
36 | 35 | oveq1d 7270 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑐𝑘)↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) |
37 | 32, 36 | eqtrd 2778 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑘)↑𝑐𝐴)) |
38 | 33, 26, 24 | cxpmul2d 25769 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝐴 · 𝑘)) = ((𝑃↑𝑐𝐴)↑𝑘)) |
39 | 28, 37, 38 | 3eqtr3d 2786 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑘)↑𝑐𝐴) = ((𝑃↑𝑐𝐴)↑𝑘)) |
40 | 39 | sumeq2dv 15343 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
41 | 8, 22, 40 | 3eqtrd 2782 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ↦ cmpt 5153 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 ℕcn 11903 ℕ0cn0 12163 ...cfz 13168 ↑cexp 13710 Σcsu 15325 ∥ cdvds 15891 ℙcprime 16304 ↑𝑐ccxp 25616 σ csgm 26150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 df-sgm 26156 |
This theorem is referenced by: 1sgmprm 26252 1sgm2ppw 26253 |
Copyright terms: Public domain | W3C validator |