MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegvscale Structured version   Visualization version   GIF version

Theorem mdegvscale 24173
Description: The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegvscale.b 𝐵 = (Base‘𝑌)
mdegvscale.k 𝐾 = (Base‘𝑅)
mdegvscale.p · = ( ·𝑠𝑌)
mdegvscale.f (𝜑𝐹𝐾)
mdegvscale.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegvscale (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem mdegvscale
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . 7 𝑌 = (𝐼 mPoly 𝑅)
2 mdegvscale.p . . . . . . 7 · = ( ·𝑠𝑌)
3 mdegvscale.k . . . . . . 7 𝐾 = (Base‘𝑅)
4 mdegvscale.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2797 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2797 . . . . . . 7 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
7 mdegvscale.f . . . . . . . 8 (𝜑𝐹𝐾)
87adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐹𝐾)
9 mdegvscale.g . . . . . . . 8 (𝜑𝐺𝐵)
109adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺𝐵)
11 simpr 478 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
121, 2, 3, 4, 5, 6, 8, 10, 11mplvscaval 19768 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘𝑥) = (𝐹(.r𝑅)(𝐺𝑥)))
1312adantrr 709 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (𝐹(.r𝑅)(𝐺𝑥)))
14 mdegaddle.d . . . . . . 7 𝐷 = (𝐼 mDeg 𝑅)
15 eqid 2797 . . . . . . 7 (0g𝑅) = (0g𝑅)
16 eqid 2797 . . . . . . 7 (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
179adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → 𝐺𝐵)
18 simprl 788 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → 𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
19 simprr 790 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))
2014, 1, 4, 15, 6, 16, 17, 18, 19mdeglt 24163 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐺𝑥) = (0g𝑅))
2120oveq2d 6892 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐹(.r𝑅)(𝐺𝑥)) = (𝐹(.r𝑅)(0g𝑅)))
22 mdegaddle.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
233, 5, 15ringrz 18901 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2422, 7, 23syl2anc 580 . . . . . 6 (𝜑 → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2524adantr 473 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2613, 21, 253eqtrd 2835 . . . 4 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
2726expr 449 . . 3 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
2827ralrimiva 3145 . 2 (𝜑 → ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
29 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
301mpllmod 19771 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ LMod)
3129, 22, 30syl2anc 580 . . . 4 (𝜑𝑌 ∈ LMod)
321, 29, 22mplsca 19765 . . . . . . 7 (𝜑𝑅 = (Scalar‘𝑌))
3332fveq2d 6413 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
343, 33syl5eq 2843 . . . . 5 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
357, 34eleqtrd 2878 . . . 4 (𝜑𝐹 ∈ (Base‘(Scalar‘𝑌)))
36 eqid 2797 . . . . 5 (Scalar‘𝑌) = (Scalar‘𝑌)
37 eqid 2797 . . . . 5 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
384, 36, 2, 37lmodvscl 19195 . . . 4 ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
3931, 35, 9, 38syl3anc 1491 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
4014, 1, 4mdegxrcl 24165 . . . 4 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
419, 40syl 17 . . 3 (𝜑 → (𝐷𝐺) ∈ ℝ*)
4214, 1, 4, 15, 6, 16mdegleb 24162 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐷𝐺) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
4339, 41, 42syl2anc 580 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
4428, 43mpbird 249 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3087  {crab 3091   class class class wbr 4841  cmpt 4920  ccnv 5309  cima 5313  cfv 6099  (class class class)co 6876  𝑚 cmap 8093  Fincfn 8193  *cxr 10360   < clt 10361  cle 10362  cn 11310  0cn0 11576  Basecbs 16181  .rcmulr 16265  Scalarcsca 16267   ·𝑠 cvsca 16268  0gc0g 16412   Σg cgsu 16413  Ringcrg 18860  LModclmod 19178   mPoly cmpl 19673  fldccnfld 20065   mDeg cmdg 24151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301  ax-mulf 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-sup 8588  df-oi 8655  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-fz 12577  df-fzo 12717  df-seq 13052  df-hash 13367  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-0g 16414  df-gsum 16415  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-submnd 17648  df-grp 17738  df-minusg 17739  df-sbg 17740  df-subg 17901  df-cntz 18059  df-cmn 18507  df-abl 18508  df-mgp 18803  df-ur 18815  df-ring 18862  df-cring 18863  df-lmod 19180  df-lss 19248  df-psr 19676  df-mpl 19678  df-cnfld 20066  df-mdeg 24153
This theorem is referenced by:  deg1vscale  24202
  Copyright terms: Public domain W3C validator