MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegvscale Structured version   Visualization version   GIF version

Theorem mdegvscale 26134
Description: The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegvscale.b 𝐵 = (Base‘𝑌)
mdegvscale.k 𝐾 = (Base‘𝑅)
mdegvscale.p · = ( ·𝑠𝑌)
mdegvscale.f (𝜑𝐹𝐾)
mdegvscale.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegvscale (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem mdegvscale
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . 7 𝑌 = (𝐼 mPoly 𝑅)
2 mdegvscale.p . . . . . . 7 · = ( ·𝑠𝑌)
3 mdegvscale.k . . . . . . 7 𝐾 = (Base‘𝑅)
4 mdegvscale.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2740 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2740 . . . . . . 7 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
7 mdegvscale.f . . . . . . . 8 (𝜑𝐹𝐾)
87adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐹𝐾)
9 mdegvscale.g . . . . . . . 8 (𝜑𝐺𝐵)
109adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺𝐵)
11 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
121, 2, 3, 4, 5, 6, 8, 10, 11mplvscaval 22059 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘𝑥) = (𝐹(.r𝑅)(𝐺𝑥)))
1312adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (𝐹(.r𝑅)(𝐺𝑥)))
14 mdegaddle.d . . . . . . 7 𝐷 = (𝐼 mDeg 𝑅)
15 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
16 eqid 2740 . . . . . . 7 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
179adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → 𝐺𝐵)
18 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → 𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
19 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))
2014, 1, 4, 15, 6, 16, 17, 18, 19mdeglt 26124 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐺𝑥) = (0g𝑅))
2120oveq2d 7464 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐹(.r𝑅)(𝐺𝑥)) = (𝐹(.r𝑅)(0g𝑅)))
22 mdegaddle.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
233, 5, 15ringrz 20317 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2422, 7, 23syl2anc 583 . . . . . 6 (𝜑 → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2524adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2613, 21, 253eqtrd 2784 . . . 4 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
2726expr 456 . . 3 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
2827ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
29 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
301, 29, 22mpllmodd 22067 . . . 4 (𝜑𝑌 ∈ LMod)
311, 29, 22mplsca 22056 . . . . . . 7 (𝜑𝑅 = (Scalar‘𝑌))
3231fveq2d 6924 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
333, 32eqtrid 2792 . . . . 5 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
347, 33eleqtrd 2846 . . . 4 (𝜑𝐹 ∈ (Base‘(Scalar‘𝑌)))
35 eqid 2740 . . . . 5 (Scalar‘𝑌) = (Scalar‘𝑌)
36 eqid 2740 . . . . 5 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
374, 35, 2, 36lmodvscl 20898 . . . 4 ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
3830, 34, 9, 37syl3anc 1371 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
3914, 1, 4mdegxrcl 26126 . . . 4 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
409, 39syl 17 . . 3 (𝜑 → (𝐷𝐺) ∈ ℝ*)
4114, 1, 4, 15, 6, 16mdegleb 26123 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐷𝐺) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
4238, 40, 41syl2anc 583 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
4328, 42mpbird 257 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  *cxr 11323   < clt 11324  cle 11325  cn 12293  0cn0 12553  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Ringcrg 20260  LModclmod 20880  fldccnfld 21387   mPoly cmpl 21949   mDeg cmdg 26112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-lmod 20882  df-lss 20953  df-cnfld 21388  df-psr 21952  df-mpl 21954  df-mdeg 26114
This theorem is referenced by:  deg1vscale  26163
  Copyright terms: Public domain W3C validator