MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegvscale Structured version   Visualization version   GIF version

Theorem mdegvscale 24840
Description: The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegvscale.b 𝐵 = (Base‘𝑌)
mdegvscale.k 𝐾 = (Base‘𝑅)
mdegvscale.p · = ( ·𝑠𝑌)
mdegvscale.f (𝜑𝐹𝐾)
mdegvscale.g (𝜑𝐺𝐵)
Assertion
Ref Expression
mdegvscale (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem mdegvscale
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . 7 𝑌 = (𝐼 mPoly 𝑅)
2 mdegvscale.p . . . . . . 7 · = ( ·𝑠𝑌)
3 mdegvscale.k . . . . . . 7 𝐾 = (Base‘𝑅)
4 mdegvscale.b . . . . . . 7 𝐵 = (Base‘𝑌)
5 eqid 2739 . . . . . . 7 (.r𝑅) = (.r𝑅)
6 eqid 2739 . . . . . . 7 {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
7 mdegvscale.f . . . . . . . 8 (𝜑𝐹𝐾)
87adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐹𝐾)
9 mdegvscale.g . . . . . . . 8 (𝜑𝐺𝐵)
109adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺𝐵)
11 simpr 488 . . . . . . 7 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
121, 2, 3, 4, 5, 6, 8, 10, 11mplvscaval 20842 . . . . . 6 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐹 · 𝐺)‘𝑥) = (𝐹(.r𝑅)(𝐺𝑥)))
1312adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (𝐹(.r𝑅)(𝐺𝑥)))
14 mdegaddle.d . . . . . . 7 𝐷 = (𝐼 mDeg 𝑅)
15 eqid 2739 . . . . . . 7 (0g𝑅) = (0g𝑅)
16 eqid 2739 . . . . . . 7 (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏)) = (𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))
179adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → 𝐺𝐵)
18 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → 𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
19 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))
2014, 1, 4, 15, 6, 16, 17, 18, 19mdeglt 24830 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐺𝑥) = (0g𝑅))
2120oveq2d 7198 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐹(.r𝑅)(𝐺𝑥)) = (𝐹(.r𝑅)(0g𝑅)))
22 mdegaddle.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
233, 5, 15ringrz 19472 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2422, 7, 23syl2anc 587 . . . . . 6 (𝜑 → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2524adantr 484 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
2613, 21, 253eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ (𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
2726expr 460 . . 3 ((𝜑𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
2827ralrimiva 3097 . 2 (𝜑 → ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
29 mdegaddle.i . . . . 5 (𝜑𝐼𝑉)
301mpllmod 20845 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ LMod)
3129, 22, 30syl2anc 587 . . . 4 (𝜑𝑌 ∈ LMod)
321, 29, 22mplsca 20839 . . . . . . 7 (𝜑𝑅 = (Scalar‘𝑌))
3332fveq2d 6690 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑌)))
343, 33syl5eq 2786 . . . . 5 (𝜑𝐾 = (Base‘(Scalar‘𝑌)))
357, 34eleqtrd 2836 . . . 4 (𝜑𝐹 ∈ (Base‘(Scalar‘𝑌)))
36 eqid 2739 . . . . 5 (Scalar‘𝑌) = (Scalar‘𝑌)
37 eqid 2739 . . . . 5 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
384, 36, 2, 37lmodvscl 19782 . . . 4 ((𝑌 ∈ LMod ∧ 𝐹 ∈ (Base‘(Scalar‘𝑌)) ∧ 𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
3931, 35, 9, 38syl3anc 1372 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
4014, 1, 4mdegxrcl 24832 . . . 4 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
419, 40syl 17 . . 3 (𝜑 → (𝐷𝐺) ∈ ℝ*)
4214, 1, 4, 15, 6, 16mdegleb 24829 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐷𝐺) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
4339, 41, 42syl2anc 587 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺) ↔ ∀𝑥 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ((𝐷𝐺) < ((𝑏 ∈ {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (ℂfld Σg 𝑏))‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
4428, 43mpbird 260 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  {crab 3058   class class class wbr 5040  cmpt 5120  ccnv 5534  cima 5538  cfv 6349  (class class class)co 7182  m cmap 8449  Fincfn 8567  *cxr 10764   < clt 10765  cle 10766  cn 11728  0cn0 11988  Basecbs 16598  .rcmulr 16681  Scalarcsca 16683   ·𝑠 cvsca 16684  0gc0g 16828   Σg cgsu 16829  Ringcrg 19428  LModclmod 19765  fldccnfld 20229   mPoly cmpl 20731   mDeg cmdg 24815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705  ax-addf 10706  ax-mulf 10707
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-of 7437  df-om 7612  df-1st 7726  df-2nd 7727  df-supp 7869  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-fsupp 8919  df-sup 8991  df-oi 9059  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-4 11793  df-5 11794  df-6 11795  df-7 11796  df-8 11797  df-9 11798  df-n0 11989  df-z 12075  df-dec 12192  df-uz 12337  df-fz 12994  df-fzo 13137  df-seq 13473  df-hash 13795  df-struct 16600  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-starv 16695  df-sca 16696  df-vsca 16697  df-tset 16699  df-ple 16700  df-ds 16702  df-unif 16703  df-0g 16830  df-gsum 16831  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-submnd 18085  df-grp 18234  df-minusg 18235  df-sbg 18236  df-subg 18406  df-cntz 18577  df-cmn 19038  df-abl 19039  df-mgp 19371  df-ur 19383  df-ring 19430  df-cring 19431  df-lmod 19767  df-lss 19835  df-cnfld 20230  df-psr 20734  df-mpl 20736  df-mdeg 24817
This theorem is referenced by:  deg1vscale  24869
  Copyright terms: Public domain W3C validator