| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplcoe2 | Structured version Visualization version GIF version | ||
| Description: Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.) |
| Ref | Expression |
|---|---|
| mplcoe1.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplcoe1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplcoe1.z | ⊢ 0 = (0g‘𝑅) |
| mplcoe1.o | ⊢ 1 = (1r‘𝑅) |
| mplcoe1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mplcoe2.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
| mplcoe2.m | ⊢ ↑ = (.g‘𝐺) |
| mplcoe2.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mplcoe2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mplcoe2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mplcoe2 | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe1.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplcoe1.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 3 | mplcoe1.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 4 | mplcoe1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
| 5 | mplcoe1.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 6 | mplcoe2.g | . 2 ⊢ 𝐺 = (mulGrp‘𝑃) | |
| 7 | mplcoe2.m | . 2 ⊢ ↑ = (.g‘𝐺) | |
| 8 | mplcoe2.v | . 2 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 9 | mplcoe2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 10 | crngring 20148 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 12 | mplcoe2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
| 13 | 1 | mplcrng 21946 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) |
| 14 | 5, 9, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ CRing) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑃 ∈ CRing) |
| 16 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 17 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝐼 ∈ 𝑊) |
| 18 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑅 ∈ Ring) |
| 19 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑦 ∈ 𝐼) | |
| 20 | 1, 8, 16, 17, 18, 19 | mvrcl 21917 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑦) ∈ (Base‘𝑃)) |
| 21 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑥 ∈ 𝐼) | |
| 22 | 1, 8, 16, 17, 18, 21 | mvrcl 21917 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑥) ∈ (Base‘𝑃)) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 24 | 6, 23 | mgpplusg 20047 | . . . . . 6 ⊢ (.r‘𝑃) = (+g‘𝐺) |
| 25 | 24 | eqcomi 2738 | . . . . 5 ⊢ (+g‘𝐺) = (.r‘𝑃) |
| 26 | 16, 25 | crngcom 20154 | . . . 4 ⊢ ((𝑃 ∈ CRing ∧ (𝑉‘𝑦) ∈ (Base‘𝑃) ∧ (𝑉‘𝑥) ∈ (Base‘𝑃)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
| 27 | 15, 20, 22, 26 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
| 28 | 27 | ralrimivva 3172 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
| 29 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 28 | mplcoe5 21963 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ifcif 4478 ↦ cmpt 5176 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 0gc0g 17361 Σg cgsu 17362 .gcmg 18964 mulGrpcmgp 20043 1rcur 20084 Ringcrg 20136 CRingccrg 20137 mVar cmvr 21830 mPoly cmpl 21831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-subrng 20449 df-subrg 20473 df-psr 21834 df-mvr 21835 df-mpl 21836 |
| This theorem is referenced by: mplbas2 21965 selvvvval 42558 |
| Copyright terms: Public domain | W3C validator |