|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mplcoe2 | Structured version Visualization version GIF version | ||
| Description: Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| mplcoe1.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) | 
| mplcoe1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | 
| mplcoe1.z | ⊢ 0 = (0g‘𝑅) | 
| mplcoe1.o | ⊢ 1 = (1r‘𝑅) | 
| mplcoe1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) | 
| mplcoe2.g | ⊢ 𝐺 = (mulGrp‘𝑃) | 
| mplcoe2.m | ⊢ ↑ = (.g‘𝐺) | 
| mplcoe2.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) | 
| mplcoe2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) | 
| mplcoe2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) | 
| Ref | Expression | 
|---|---|
| mplcoe2 | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mplcoe1.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplcoe1.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 3 | mplcoe1.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 4 | mplcoe1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
| 5 | mplcoe1.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 6 | mplcoe2.g | . 2 ⊢ 𝐺 = (mulGrp‘𝑃) | |
| 7 | mplcoe2.m | . 2 ⊢ ↑ = (.g‘𝐺) | |
| 8 | mplcoe2.v | . 2 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 9 | mplcoe2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 10 | crngring 20243 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 12 | mplcoe2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
| 13 | 1 | mplcrng 22042 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) | 
| 14 | 5, 9, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ CRing) | 
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑃 ∈ CRing) | 
| 16 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 17 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝐼 ∈ 𝑊) | 
| 18 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑅 ∈ Ring) | 
| 19 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑦 ∈ 𝐼) | |
| 20 | 1, 8, 16, 17, 18, 19 | mvrcl 22013 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑦) ∈ (Base‘𝑃)) | 
| 21 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑥 ∈ 𝐼) | |
| 22 | 1, 8, 16, 17, 18, 21 | mvrcl 22013 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑥) ∈ (Base‘𝑃)) | 
| 23 | eqid 2736 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 24 | 6, 23 | mgpplusg 20142 | . . . . . 6 ⊢ (.r‘𝑃) = (+g‘𝐺) | 
| 25 | 24 | eqcomi 2745 | . . . . 5 ⊢ (+g‘𝐺) = (.r‘𝑃) | 
| 26 | 16, 25 | crngcom 20249 | . . . 4 ⊢ ((𝑃 ∈ CRing ∧ (𝑉‘𝑦) ∈ (Base‘𝑃) ∧ (𝑉‘𝑥) ∈ (Base‘𝑃)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) | 
| 27 | 15, 20, 22, 26 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) | 
| 28 | 27 | ralrimivva 3201 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) | 
| 29 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 28 | mplcoe5 22059 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 ifcif 4524 ↦ cmpt 5224 ◡ccnv 5683 “ cima 5687 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 Fincfn 8986 ℕcn 12267 ℕ0cn0 12528 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 0gc0g 17485 Σg cgsu 17486 .gcmg 19086 mulGrpcmgp 20138 1rcur 20179 Ringcrg 20231 CRingccrg 20232 mVar cmvr 21926 mPoly cmpl 21927 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-srg 20185 df-ring 20233 df-cring 20234 df-subrng 20547 df-subrg 20571 df-psr 21930 df-mvr 21931 df-mpl 21932 | 
| This theorem is referenced by: mplbas2 22061 selvvvval 42600 | 
| Copyright terms: Public domain | W3C validator |