Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplcoe2 | Structured version Visualization version GIF version |
Description: Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.) |
Ref | Expression |
---|---|
mplcoe1.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplcoe1.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplcoe1.z | ⊢ 0 = (0g‘𝑅) |
mplcoe1.o | ⊢ 1 = (1r‘𝑅) |
mplcoe1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplcoe2.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
mplcoe2.m | ⊢ ↑ = (.g‘𝐺) |
mplcoe2.v | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
mplcoe2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mplcoe2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐷) |
Ref | Expression |
---|---|
mplcoe2 | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplcoe1.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | mplcoe1.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
3 | mplcoe1.z | . 2 ⊢ 0 = (0g‘𝑅) | |
4 | mplcoe1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
5 | mplcoe1.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | mplcoe2.g | . 2 ⊢ 𝐺 = (mulGrp‘𝑃) | |
7 | mplcoe2.m | . 2 ⊢ ↑ = (.g‘𝐺) | |
8 | mplcoe2.v | . 2 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
9 | mplcoe2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
10 | crngring 19685 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | mplcoe2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐷) | |
13 | 1 | mplcrng 21111 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) |
14 | 5, 9, 13 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ CRing) |
15 | 14 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑃 ∈ CRing) |
16 | eqid 2739 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
17 | 5 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝐼 ∈ 𝑊) |
18 | 11 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑅 ∈ Ring) |
19 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑦 ∈ 𝐼) | |
20 | 1, 8, 16, 17, 18, 19 | mvrcl 21106 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑦) ∈ (Base‘𝑃)) |
21 | simprl 771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → 𝑥 ∈ 𝐼) | |
22 | 1, 8, 16, 17, 18, 21 | mvrcl 21106 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → (𝑉‘𝑥) ∈ (Base‘𝑃)) |
23 | eqid 2739 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
24 | 6, 23 | mgpplusg 19614 | . . . . . 6 ⊢ (.r‘𝑃) = (+g‘𝐺) |
25 | 24 | eqcomi 2748 | . . . . 5 ⊢ (+g‘𝐺) = (.r‘𝑃) |
26 | 16, 25 | crngcom 19691 | . . . 4 ⊢ ((𝑃 ∈ CRing ∧ (𝑉‘𝑦) ∈ (Base‘𝑃) ∧ (𝑉‘𝑥) ∈ (Base‘𝑃)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
27 | 15, 20, 22, 26 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼)) → ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
28 | 27 | ralrimivva 3115 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) |
29 | 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 28 | mplcoe5 21126 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 {crab 3068 ifcif 4456 ↦ cmpt 5152 ◡ccnv 5578 “ cima 5582 ‘cfv 6415 (class class class)co 7252 ↑m cmap 8550 Fincfn 8668 ℕcn 11878 ℕ0cn0 12138 Basecbs 16815 +gcplusg 16863 .rcmulr 16864 0gc0g 17042 Σg cgsu 17043 .gcmg 18590 mulGrpcmgp 19610 1rcur 19627 Ringcrg 19673 CRingccrg 19674 mVar cmvr 20993 mPoly cmpl 20994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-of 7508 df-ofr 7509 df-om 7685 df-1st 7801 df-2nd 7802 df-supp 7946 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-pm 8553 df-ixp 8621 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-fsupp 9034 df-oi 9174 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-fzo 13287 df-seq 13625 df-hash 13948 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-sca 16879 df-vsca 16880 df-tset 16882 df-0g 17044 df-gsum 17045 df-mre 17187 df-mrc 17188 df-acs 17190 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-mhm 18320 df-submnd 18321 df-grp 18470 df-minusg 18471 df-mulg 18591 df-subg 18642 df-ghm 18722 df-cntz 18813 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-srg 19632 df-ring 19675 df-cring 19676 df-subrg 19912 df-psr 20997 df-mvr 20998 df-mpl 20999 |
This theorem is referenced by: mplbas2 21128 |
Copyright terms: Public domain | W3C validator |