Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe2 Structured version   Visualization version   GIF version

Theorem mplcoe2 19866
 Description: Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe2.r (𝜑𝑅 ∈ CRing)
mplcoe2.y (𝜑𝑌𝐷)
Assertion
Ref Expression
mplcoe2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   ,𝑘,𝑦   1 ,𝑘,𝑦   𝑘,𝐺   𝑓,𝑘,𝑦,𝐼   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   𝑘,𝑉   0 ,𝑓,𝑘,𝑦   𝑓,𝑌,𝑘,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 mplcoe1.d . 2 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3 mplcoe1.z . 2 0 = (0g𝑅)
4 mplcoe1.o . 2 1 = (1r𝑅)
5 mplcoe1.i . 2 (𝜑𝐼𝑊)
6 mplcoe2.g . 2 𝐺 = (mulGrp‘𝑃)
7 mplcoe2.m . 2 = (.g𝐺)
8 mplcoe2.v . 2 𝑉 = (𝐼 mVar 𝑅)
9 mplcoe2.r . . 3 (𝜑𝑅 ∈ CRing)
10 crngring 18945 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . 2 (𝜑𝑅 ∈ Ring)
12 mplcoe2.y . 2 (𝜑𝑌𝐷)
131mplcrng 19850 . . . . . 6 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ CRing)
145, 9, 13syl2anc 579 . . . . 5 (𝜑𝑃 ∈ CRing)
1514adantr 474 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑃 ∈ CRing)
16 eqid 2777 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
175adantr 474 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝐼𝑊)
1811adantr 474 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑅 ∈ Ring)
19 simprr 763 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑦𝐼)
201, 8, 16, 17, 18, 19mvrcl 19846 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → (𝑉𝑦) ∈ (Base‘𝑃))
21 simprl 761 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → 𝑥𝐼)
221, 8, 16, 17, 18, 21mvrcl 19846 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → (𝑉𝑥) ∈ (Base‘𝑃))
23 eqid 2777 . . . . . . 7 (.r𝑃) = (.r𝑃)
246, 23mgpplusg 18880 . . . . . 6 (.r𝑃) = (+g𝐺)
2524eqcomi 2786 . . . . 5 (+g𝐺) = (.r𝑃)
2616, 25crngcom 18949 . . . 4 ((𝑃 ∈ CRing ∧ (𝑉𝑦) ∈ (Base‘𝑃) ∧ (𝑉𝑥) ∈ (Base‘𝑃)) → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
2715, 20, 22, 26syl3anc 1439 . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐼)) → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
2827ralrimivva 3152 . 2 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
291, 2, 3, 4, 5, 6, 7, 8, 11, 12, 28mplcoe5 19865 1 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘𝐼 ↦ ((𝑌𝑘) (𝑉𝑘)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2106  {crab 3093  ifcif 4306   ↦ cmpt 4965  ◡ccnv 5354   “ cima 5358  ‘cfv 6135  (class class class)co 6922   ↑𝑚 cmap 8140  Fincfn 8241  ℕcn 11374  ℕ0cn0 11642  Basecbs 16255  +gcplusg 16338  .rcmulr 16339  0gc0g 16486   Σg cgsu 16487  .gcmg 17927  mulGrpcmgp 18876  1rcur 18888  Ringcrg 18934  CRingccrg 18935   mVar cmvr 19749   mPoly cmpl 19750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-seq 13120  df-hash 13436  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-tset 16357  df-0g 16488  df-gsum 16489  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-mulg 17928  df-subg 17975  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-srg 18893  df-ring 18936  df-cring 18937  df-subrg 19170  df-psr 19753  df-mvr 19754  df-mpl 19755 This theorem is referenced by:  mplbas2  19867
 Copyright terms: Public domain W3C validator