Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cnlnadjlem8 | Structured version Visualization version GIF version |
Description: Lemma for cnlnadji 30726. 𝐹 is continuous. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp |
cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp |
cnlnadjlem.3 | ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) |
cnlnadjlem.4 | ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) |
cnlnadjlem.5 | ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) |
Ref | Expression |
---|---|
cnlnadjlem8 | ⊢ 𝐹 ∈ ContOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlnadjlem.1 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
2 | cnlnadjlem.2 | . . . 4 ⊢ 𝑇 ∈ ContOp | |
3 | 1, 2 | nmcopexi 30677 | . . 3 ⊢ (normop‘𝑇) ∈ ℝ |
4 | cnlnadjlem.3 | . . . . 5 ⊢ 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑦)) | |
5 | cnlnadjlem.4 | . . . . 5 ⊢ 𝐵 = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤)) | |
6 | cnlnadjlem.5 | . . . . 5 ⊢ 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵) | |
7 | 1, 2, 4, 5, 6 | cnlnadjlem7 30723 | . . . 4 ⊢ (𝑧 ∈ ℋ → (normℎ‘(𝐹‘𝑧)) ≤ ((normop‘𝑇) · (normℎ‘𝑧))) |
8 | 7 | rgen 3064 | . . 3 ⊢ ∀𝑧 ∈ ℋ (normℎ‘(𝐹‘𝑧)) ≤ ((normop‘𝑇) · (normℎ‘𝑧)) |
9 | oveq1 7349 | . . . . . 6 ⊢ (𝑥 = (normop‘𝑇) → (𝑥 · (normℎ‘𝑧)) = ((normop‘𝑇) · (normℎ‘𝑧))) | |
10 | 9 | breq2d 5109 | . . . . 5 ⊢ (𝑥 = (normop‘𝑇) → ((normℎ‘(𝐹‘𝑧)) ≤ (𝑥 · (normℎ‘𝑧)) ↔ (normℎ‘(𝐹‘𝑧)) ≤ ((normop‘𝑇) · (normℎ‘𝑧)))) |
11 | 10 | ralbidv 3171 | . . . 4 ⊢ (𝑥 = (normop‘𝑇) → (∀𝑧 ∈ ℋ (normℎ‘(𝐹‘𝑧)) ≤ (𝑥 · (normℎ‘𝑧)) ↔ ∀𝑧 ∈ ℋ (normℎ‘(𝐹‘𝑧)) ≤ ((normop‘𝑇) · (normℎ‘𝑧)))) |
12 | 11 | rspcev 3574 | . . 3 ⊢ (((normop‘𝑇) ∈ ℝ ∧ ∀𝑧 ∈ ℋ (normℎ‘(𝐹‘𝑧)) ≤ ((normop‘𝑇) · (normℎ‘𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (normℎ‘(𝐹‘𝑧)) ≤ (𝑥 · (normℎ‘𝑧))) |
13 | 3, 8, 12 | mp2an 690 | . 2 ⊢ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (normℎ‘(𝐹‘𝑧)) ≤ (𝑥 · (normℎ‘𝑧)) |
14 | 1, 2, 4, 5, 6 | cnlnadjlem6 30722 | . . 3 ⊢ 𝐹 ∈ LinOp |
15 | 14 | lnopconi 30684 | . 2 ⊢ (𝐹 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (normℎ‘(𝐹‘𝑧)) ≤ (𝑥 · (normℎ‘𝑧))) |
16 | 13, 15 | mpbir 230 | 1 ⊢ 𝐹 ∈ ContOp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 class class class wbr 5097 ↦ cmpt 5180 ‘cfv 6484 ℩crio 7297 (class class class)co 7342 ℝcr 10976 · cmul 10982 ≤ cle 11116 ℋchba 29569 ·ih csp 29572 normℎcno 29573 normopcnop 29595 ContOpccop 29596 LinOpclo 29597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cc 10297 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 ax-addf 11056 ax-mulf 11057 ax-hilex 29649 ax-hfvadd 29650 ax-hvcom 29651 ax-hvass 29652 ax-hv0cl 29653 ax-hvaddid 29654 ax-hfvmul 29655 ax-hvmulid 29656 ax-hvmulass 29657 ax-hvdistr1 29658 ax-hvdistr2 29659 ax-hvmul0 29660 ax-hfi 29729 ax-his1 29732 ax-his2 29733 ax-his3 29734 ax-his4 29735 ax-hcompl 29852 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-2o 8373 df-oadd 8376 df-omul 8377 df-er 8574 df-map 8693 df-pm 8694 df-ixp 8762 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-fi 9273 df-sup 9304 df-inf 9305 df-oi 9372 df-card 9801 df-acn 9804 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-q 12795 df-rp 12837 df-xneg 12954 df-xadd 12955 df-xmul 12956 df-ioo 13189 df-ico 13191 df-icc 13192 df-fz 13346 df-fzo 13489 df-fl 13618 df-seq 13828 df-exp 13889 df-hash 14151 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-clim 15297 df-rlim 15298 df-sum 15498 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-unif 17083 df-hom 17084 df-cco 17085 df-rest 17231 df-topn 17232 df-0g 17250 df-gsum 17251 df-topgen 17252 df-pt 17253 df-prds 17256 df-xrs 17311 df-qtop 17316 df-imas 17317 df-xps 17319 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-mulg 18798 df-cntz 19020 df-cmn 19484 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-cn 22484 df-cnp 22485 df-lm 22486 df-t1 22571 df-haus 22572 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-xms 23579 df-ms 23580 df-tms 23581 df-cfil 24525 df-cau 24526 df-cmet 24527 df-grpo 29143 df-gid 29144 df-ginv 29145 df-gdiv 29146 df-ablo 29195 df-vc 29209 df-nv 29242 df-va 29245 df-ba 29246 df-sm 29247 df-0v 29248 df-vs 29249 df-nmcv 29250 df-ims 29251 df-dip 29351 df-ssp 29372 df-ph 29463 df-cbn 29513 df-hnorm 29618 df-hba 29619 df-hvsub 29621 df-hlim 29622 df-hcau 29623 df-sh 29857 df-ch 29871 df-oc 29902 df-ch0 29903 df-nmop 30489 df-cnop 30490 df-lnop 30491 df-unop 30493 df-nmfn 30495 df-nlfn 30496 df-cnfn 30497 df-lnfn 30498 |
This theorem is referenced by: cnlnadjlem9 30725 |
Copyright terms: Public domain | W3C validator |