HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem8 Structured version   Visualization version   GIF version

Theorem cnlnadjlem8 30724
Description: Lemma for cnlnadji 30726. 𝐹 is continuous. (Contributed by NM, 17-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem8 𝐹 ∈ ContOp
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦   𝑤,𝐹   𝑇,𝑔,𝑣,𝑤,𝑦   𝑣,𝐺,𝑤
Allowed substitution hints:   𝐵(𝑦,𝑤,𝑣,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑔)

Proof of Theorem cnlnadjlem8
Dummy variables 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
2 cnlnadjlem.2 . . . 4 𝑇 ∈ ContOp
31, 2nmcopexi 30677 . . 3 (normop𝑇) ∈ ℝ
4 cnlnadjlem.3 . . . . 5 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
5 cnlnadjlem.4 . . . . 5 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
6 cnlnadjlem.5 . . . . 5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
71, 2, 4, 5, 6cnlnadjlem7 30723 . . . 4 (𝑧 ∈ ℋ → (norm‘(𝐹𝑧)) ≤ ((normop𝑇) · (norm𝑧)))
87rgen 3064 . . 3 𝑧 ∈ ℋ (norm‘(𝐹𝑧)) ≤ ((normop𝑇) · (norm𝑧))
9 oveq1 7349 . . . . . 6 (𝑥 = (normop𝑇) → (𝑥 · (norm𝑧)) = ((normop𝑇) · (norm𝑧)))
109breq2d 5109 . . . . 5 (𝑥 = (normop𝑇) → ((norm‘(𝐹𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ (norm‘(𝐹𝑧)) ≤ ((normop𝑇) · (norm𝑧))))
1110ralbidv 3171 . . . 4 (𝑥 = (normop𝑇) → (∀𝑧 ∈ ℋ (norm‘(𝐹𝑧)) ≤ (𝑥 · (norm𝑧)) ↔ ∀𝑧 ∈ ℋ (norm‘(𝐹𝑧)) ≤ ((normop𝑇) · (norm𝑧))))
1211rspcev 3574 . . 3 (((normop𝑇) ∈ ℝ ∧ ∀𝑧 ∈ ℋ (norm‘(𝐹𝑧)) ≤ ((normop𝑇) · (norm𝑧))) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (norm‘(𝐹𝑧)) ≤ (𝑥 · (norm𝑧)))
133, 8, 12mp2an 690 . 2 𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (norm‘(𝐹𝑧)) ≤ (𝑥 · (norm𝑧))
141, 2, 4, 5, 6cnlnadjlem6 30722 . . 3 𝐹 ∈ LinOp
1514lnopconi 30684 . 2 (𝐹 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ℋ (norm‘(𝐹𝑧)) ≤ (𝑥 · (norm𝑧)))
1613, 15mpbir 230 1 𝐹 ∈ ContOp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  wral 3062  wrex 3071   class class class wbr 5097  cmpt 5180  cfv 6484  crio 7297  (class class class)co 7342  cr 10976   · cmul 10982  cle 11116  chba 29569   ·ih csp 29572  normcno 29573  normopcnop 29595  ContOpccop 29596  LinOpclo 29597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cc 10297  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055  ax-addf 11056  ax-mulf 11057  ax-hilex 29649  ax-hfvadd 29650  ax-hvcom 29651  ax-hvass 29652  ax-hv0cl 29653  ax-hvaddid 29654  ax-hfvmul 29655  ax-hvmulid 29656  ax-hvmulass 29657  ax-hvdistr1 29658  ax-hvdistr2 29659  ax-hvmul0 29660  ax-hfi 29729  ax-his1 29732  ax-his2 29733  ax-his3 29734  ax-his4 29735  ax-hcompl 29852
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-oadd 8376  df-omul 8377  df-er 8574  df-map 8693  df-pm 8694  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-fi 9273  df-sup 9304  df-inf 9305  df-oi 9372  df-card 9801  df-acn 9804  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-q 12795  df-rp 12837  df-xneg 12954  df-xadd 12955  df-xmul 12956  df-ioo 13189  df-ico 13191  df-icc 13192  df-fz 13346  df-fzo 13489  df-fl 13618  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-rlim 15298  df-sum 15498  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-starv 17075  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-unif 17083  df-hom 17084  df-cco 17085  df-rest 17231  df-topn 17232  df-0g 17250  df-gsum 17251  df-topgen 17252  df-pt 17253  df-prds 17256  df-xrs 17311  df-qtop 17316  df-imas 17317  df-xps 17319  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-mulg 18798  df-cntz 19020  df-cmn 19484  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-cn 22484  df-cnp 22485  df-lm 22486  df-t1 22571  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cfil 24525  df-cau 24526  df-cmet 24527  df-grpo 29143  df-gid 29144  df-ginv 29145  df-gdiv 29146  df-ablo 29195  df-vc 29209  df-nv 29242  df-va 29245  df-ba 29246  df-sm 29247  df-0v 29248  df-vs 29249  df-nmcv 29250  df-ims 29251  df-dip 29351  df-ssp 29372  df-ph 29463  df-cbn 29513  df-hnorm 29618  df-hba 29619  df-hvsub 29621  df-hlim 29622  df-hcau 29623  df-sh 29857  df-ch 29871  df-oc 29902  df-ch0 29903  df-nmop 30489  df-cnop 30490  df-lnop 30491  df-unop 30493  df-nmfn 30495  df-nlfn 30496  df-cnfn 30497  df-lnfn 30498
This theorem is referenced by:  cnlnadjlem9  30725
  Copyright terms: Public domain W3C validator