Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk8 Structured version   Visualization version   GIF version

Theorem numclwwlk8 27863
 Description: The size of the set of closed walks of length 𝑃, 𝑃 prime, is divisible by 𝑃. This corresponds to statement 9 in [Huneke] p. 2: "It follows that, if p is a prime number, then the number of closed walks of length p is divisible by p", see also clwlksndivn 27552. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 3-Jun-2021.) (Proof shortened by AV, 2-Mar-2022.)
Assertion
Ref Expression
numclwwlk8 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℙ) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0)

Proof of Theorem numclwwlk8
StepHypRef Expression
1 prmnn 15847 . 2 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2 clwwlkndivn 27546 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℙ) → 𝑃 ∥ (♯‘(𝑃 ClWWalksN 𝐺)))
3 dvdsmod0 15446 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ (♯‘(𝑃 ClWWalksN 𝐺))) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0)
41, 2, 3syl2an2 682 1 ((𝐺 ∈ FinUSGraph ∧ 𝑃 ∈ ℙ) → ((♯‘(𝑃 ClWWalksN 𝐺)) mod 𝑃) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1522   ∈ wcel 2081   class class class wbr 4962  ‘cfv 6225  (class class class)co 7016  0cc0 10383  ℕcn 11486   mod cmo 13087  ♯chash 13540   ∥ cdvds 15440  ℙcprime 15844  FinUSGraphcfusgr 26781   ClWWalksN cclwwlkn 27489 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-ec 8141  df-qs 8145  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-rp 12240  df-ico 12594  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-hash 13541  df-word 13708  df-lsw 13761  df-concat 13769  df-substr 13839  df-pfx 13869  df-reps 13967  df-csh 13987  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-dvds 15441  df-gcd 15677  df-prm 15845  df-phi 15932  df-edg 26516  df-umgr 26551  df-usgr 26619  df-fusgr 26782  df-clwwlk 27447  df-clwwlkn 27490 This theorem is referenced by:  frgrreggt1  27864
 Copyright terms: Public domain W3C validator