Proof of Theorem pgnbgreunbgrlem5lem3
| Step | Hyp | Ref
| Expression |
| 1 | | 5eluz3 12848 |
. . . . . . . 8
⊢ 5 ∈
(ℤ≥‘3) |
| 2 | | pglem 48072 |
. . . . . . . 8
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 3 | 1, 2 | pm3.2i 470 |
. . . . . . 7
⊢ (5 ∈
(ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) |
| 4 | | c0ex 11174 |
. . . . . . . 8
⊢ 0 ∈
V |
| 5 | | ovex 7422 |
. . . . . . . 8
⊢ ((𝑦 − 1) mod 5) ∈
V |
| 6 | 4, 5 | op1st 7978 |
. . . . . . 7
⊢
(1st ‘〈0, ((𝑦 − 1) mod 5)〉) =
0 |
| 7 | | simpr 484 |
. . . . . . 7
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {〈0,
((𝑦 − 1) mod
5)〉, 〈1, 𝑏〉}
∈ 𝐸) → {〈0,
((𝑦 − 1) mod
5)〉, 〈1, 𝑏〉}
∈ 𝐸) |
| 8 | | eqid 2730 |
. . . . . . . 8
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 9 | | pgnbgreunbgr.g |
. . . . . . . 8
⊢ 𝐺 = (5 gPetersenGr
2) |
| 10 | | pgnbgreunbgr.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | | pgnbgreunbgr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 12 | 8, 9, 10, 11 | gpgvtxedg0 48044 |
. . . . . . 7
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (1st ‘〈0, ((𝑦 − 1) mod 5)〉) = 0 ∧ {〈0,
((𝑦 − 1) mod
5)〉, 〈1, 𝑏〉}
∈ 𝐸) → (〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) + 1) mod 5)〉
∨ 〈1, 𝑏〉 =
〈1, (2nd ‘〈0, ((𝑦 − 1) mod 5)〉)〉 ∨ 〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) − 1) mod
5)〉)) |
| 13 | 3, 6, 7, 12 | mp3an12i 1467 |
. . . . . 6
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {〈0,
((𝑦 − 1) mod
5)〉, 〈1, 𝑏〉}
∈ 𝐸) → (〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) + 1) mod 5)〉
∨ 〈1, 𝑏〉 =
〈1, (2nd ‘〈0, ((𝑦 − 1) mod 5)〉)〉 ∨ 〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) − 1) mod
5)〉)) |
| 14 | 13 | ex 412 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈0, ((𝑦 − 1)
mod 5)〉, 〈1, 𝑏〉} ∈ 𝐸 → (〈1, 𝑏〉 = 〈0, (((2nd
‘〈0, ((𝑦 −
1) mod 5)〉) + 1) mod 5)〉 ∨ 〈1, 𝑏〉 = 〈1, (2nd
‘〈0, ((𝑦 −
1) mod 5)〉)〉 ∨ 〈1, 𝑏〉 = 〈0, (((2nd
‘〈0, ((𝑦 −
1) mod 5)〉) − 1) mod 5)〉))) |
| 15 | | 1ex 11176 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 16 | | vex 3454 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
| 17 | 15, 16 | opth 5438 |
. . . . . . . 8
⊢ (〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) + 1) mod 5)〉
↔ (1 = 0 ∧ 𝑏 =
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) + 1) mod
5))) |
| 18 | | ax-1ne0 11143 |
. . . . . . . . . . 11
⊢ 1 ≠
0 |
| 19 | 18 | a1i 11 |
. . . . . . . . . 10
⊢
({〈1, 𝑏〉,
〈0, ((𝑦 + 1) mod
5)〉} ∈ 𝐸 → 1
≠ 0) |
| 20 | 19 | necon2bi 2956 |
. . . . . . . . 9
⊢ (1 = 0
→ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 21 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((1 = 0
∧ 𝑏 = (((2nd
‘〈0, ((𝑦 −
1) mod 5)〉) + 1) mod 5)) → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 22 | 17, 21 | sylbi 217 |
. . . . . . 7
⊢ (〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) + 1) mod 5)〉
→ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 23 | 22 | a1i 11 |
. . . . . 6
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
(〈1, 𝑏〉 =
〈0, (((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) + 1) mod 5)〉
→ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 24 | 15, 16 | opth 5438 |
. . . . . . . 8
⊢ (〈1,
𝑏〉 = 〈1,
(2nd ‘〈0, ((𝑦 − 1) mod 5)〉)〉 ↔ (1 = 1
∧ 𝑏 = (2nd
‘〈0, ((𝑦 −
1) mod 5)〉))) |
| 25 | 4, 5 | op2nd 7979 |
. . . . . . . . . 10
⊢
(2nd ‘〈0, ((𝑦 − 1) mod 5)〉) = ((𝑦 − 1) mod
5) |
| 26 | 25 | eqeq2i 2743 |
. . . . . . . . 9
⊢ (𝑏 = (2nd
‘〈0, ((𝑦 −
1) mod 5)〉) ↔ 𝑏 =
((𝑦 − 1) mod
5)) |
| 27 | 9, 11 | pgnioedg5 48092 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0..^5) → ¬
{〈1, ((𝑦 − 1)
mod 5)〉, 〈0, ((𝑦
+ 1) mod 5)〉} ∈ 𝐸) |
| 28 | 27 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬
{〈1, ((𝑦 − 1)
mod 5)〉, 〈0, ((𝑦
+ 1) mod 5)〉} ∈ 𝐸) |
| 29 | | opeq2 4840 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ((𝑦 − 1) mod 5) → 〈1, 𝑏〉 = 〈1, ((𝑦 − 1) mod
5)〉) |
| 30 | 29 | preq1d 4705 |
. . . . . . . . . . . 12
⊢ (𝑏 = ((𝑦 − 1) mod 5) → {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} = {〈1,
((𝑦 − 1) mod
5)〉, 〈0, ((𝑦 + 1)
mod 5)〉}) |
| 31 | 30 | eleq1d 2814 |
. . . . . . . . . . 11
⊢ (𝑏 = ((𝑦 − 1) mod 5) → ({〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸 ↔ {〈1, ((𝑦 − 1) mod 5)〉,
〈0, ((𝑦 + 1) mod
5)〉} ∈ 𝐸)) |
| 32 | 31 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑏 = ((𝑦 − 1) mod 5) → (¬ {〈1,
𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸 ↔ ¬ {〈1, ((𝑦 − 1) mod 5)〉,
〈0, ((𝑦 + 1) mod
5)〉} ∈ 𝐸)) |
| 33 | 28, 32 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝑏 = ((𝑦 − 1) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ¬
{〈1, 𝑏〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 34 | 26, 33 | sylbi 217 |
. . . . . . . 8
⊢ (𝑏 = (2nd
‘〈0, ((𝑦 −
1) mod 5)〉) → ((𝑏
∈ (0..^5) ∧ 𝑦
∈ (0..^5)) → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 35 | 24, 34 | simplbiim 504 |
. . . . . . 7
⊢ (〈1,
𝑏〉 = 〈1,
(2nd ‘〈0, ((𝑦 − 1) mod 5)〉)〉 →
((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) →
¬ {〈1, 𝑏〉,
〈0, ((𝑦 + 1) mod
5)〉} ∈ 𝐸)) |
| 36 | 35 | com12 32 |
. . . . . 6
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
(〈1, 𝑏〉 =
〈1, (2nd ‘〈0, ((𝑦 − 1) mod 5)〉)〉 → ¬
{〈1, 𝑏〉, 〈0,
((𝑦 + 1) mod 5)〉}
∈ 𝐸)) |
| 37 | 15, 16 | opth 5438 |
. . . . . . . 8
⊢ (〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) − 1) mod
5)〉 ↔ (1 = 0 ∧ 𝑏 = (((2nd ‘〈0, ((𝑦 − 1) mod 5)〉)
− 1) mod 5))) |
| 38 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((1 = 0
∧ 𝑏 = (((2nd
‘〈0, ((𝑦 −
1) mod 5)〉) − 1) mod 5)) → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 39 | 37, 38 | sylbi 217 |
. . . . . . 7
⊢ (〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) − 1) mod
5)〉 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸) |
| 40 | 39 | a1i 11 |
. . . . . 6
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
(〈1, 𝑏〉 =
〈0, (((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) − 1) mod
5)〉 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 41 | 23, 36, 40 | 3jaod 1431 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
((〈1, 𝑏〉 =
〈0, (((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) + 1) mod 5)〉
∨ 〈1, 𝑏〉 =
〈1, (2nd ‘〈0, ((𝑦 − 1) mod 5)〉)〉 ∨ 〈1,
𝑏〉 = 〈0,
(((2nd ‘〈0, ((𝑦 − 1) mod 5)〉) − 1) mod
5)〉) → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 42 | 14, 41 | syld 47 |
. . . 4
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈0, ((𝑦 − 1)
mod 5)〉, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 43 | 42 | adantl 481 |
. . 3
⊢ (((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) →
({〈0, ((𝑦 − 1)
mod 5)〉, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 44 | | preq1 4699 |
. . . . . . 7
⊢ (𝐾 = 〈0, ((𝑦 − 1) mod 5)〉 → {𝐾, 〈1, 𝑏〉} = {〈0, ((𝑦 − 1) mod 5)〉, 〈1, 𝑏〉}) |
| 45 | 44 | eleq1d 2814 |
. . . . . 6
⊢ (𝐾 = 〈0, ((𝑦 − 1) mod 5)〉 → ({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ↔ {〈0, ((𝑦 − 1) mod 5)〉, 〈1, 𝑏〉} ∈ 𝐸)) |
| 46 | 45 | adantl 481 |
. . . . 5
⊢ ((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) → ({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ↔ {〈0, ((𝑦 − 1) mod 5)〉, 〈1, 𝑏〉} ∈ 𝐸)) |
| 47 | | preq2 4700 |
. . . . . . . 8
⊢ (𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 → {〈1, 𝑏〉, 𝐿} = {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉}) |
| 48 | 47 | eleq1d 2814 |
. . . . . . 7
⊢ (𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 → ({〈1, 𝑏〉, 𝐿} ∈ 𝐸 ↔ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 49 | 48 | notbid 318 |
. . . . . 6
⊢ (𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 → (¬ {〈1,
𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 50 | 49 | adantr 480 |
. . . . 5
⊢ ((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) → (¬
{〈1, 𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸)) |
| 51 | 46, 50 | imbi12d 344 |
. . . 4
⊢ ((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈0, ((𝑦 − 1) mod 5)〉, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸))) |
| 52 | 51 | adantr 480 |
. . 3
⊢ (((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) →
(({𝐾, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈0, ((𝑦 − 1) mod 5)〉, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 〈0, ((𝑦 + 1) mod 5)〉} ∈ 𝐸))) |
| 53 | 43, 52 | mpbird 257 |
. 2
⊢ (((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐾, 〈1, 𝑏〉} ∈ 𝐸 → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸)) |
| 54 | 53 | imp 406 |
1
⊢ ((((𝐿 = 〈0, ((𝑦 + 1) mod 5)〉 ∧ 𝐾 = 〈0, ((𝑦 − 1) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈1, 𝑏〉} ∈ 𝐸) → ¬ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) |