Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem5 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem5 48285
Description: Lemma 5 for pgnbgreunbgr 48287. Impossible cases. (Contributed by AV, 21-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem5 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
Distinct variable groups:   𝑦,𝑏   𝑦,𝐸   𝑦,𝐾   𝑦,𝐿   𝑦,𝑁   𝑦,𝑉   𝑦,𝑋
Allowed substitution hints:   𝐸(𝑏)   𝐺(𝑦,𝑏)   𝐾(𝑏)   𝐿(𝑏)   𝑁(𝑏)   𝑉(𝑏)   𝑋(𝑏)

Proof of Theorem pgnbgreunbgrlem5
StepHypRef Expression
1 c0ex 11117 . . . . . 6 0 ∈ V
2 vex 3441 . . . . . 6 𝑦 ∈ V
31, 2op2ndd 7941 . . . . 5 (𝑋 = ⟨0, 𝑦⟩ → (2nd𝑋) = 𝑦)
43adantr 480 . . . 4 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → (2nd𝑋) = 𝑦)
5 oveq1 7362 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ((2nd𝑋) + 1) = (𝑦 + 1))
65oveq1d 7370 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (((2nd𝑋) + 1) mod 5) = ((𝑦 + 1) mod 5))
76opeq2d 4833 . . . . . . 7 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩)
87eqeq2d 2744 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ↔ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩))
9 opeq2 4827 . . . . . . 7 ((2nd𝑋) = 𝑦 → ⟨1, (2nd𝑋)⟩ = ⟨1, 𝑦⟩)
109eqeq2d 2744 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨1, (2nd𝑋)⟩ ↔ 𝐿 = ⟨1, 𝑦⟩))
11 oveq1 7362 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ((2nd𝑋) − 1) = (𝑦 − 1))
1211oveq1d 7370 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (((2nd𝑋) − 1) mod 5) = ((𝑦 − 1) mod 5))
1312opeq2d 4833 . . . . . . 7 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩)
1413eqeq2d 2744 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩ ↔ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩))
158, 10, 143orbi123d 1437 . . . . 5 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ↔ (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩)))
167eqeq2d 2744 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ↔ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩))
179eqeq2d 2744 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨1, (2nd𝑋)⟩ ↔ 𝐾 = ⟨1, 𝑦⟩))
1813eqeq2d 2744 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩ ↔ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))
1916, 17, 183orbi123d 1437 . . . . 5 ((2nd𝑋) = 𝑦 → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ↔ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)))
2015, 19anbi12d 632 . . . 4 ((2nd𝑋) = 𝑦 → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) ↔ ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))))
214, 20syl 17 . . 3 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) ↔ ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))))
22 simpl 482 . . . . . . . . . . 11 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩)
23 simpr 484 . . . . . . . . . . 11 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩)
2422, 23neeq12d 2990 . . . . . . . . . 10 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩))
2524ancoms 458 . . . . . . . . 9 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩))
26 eqid 2733 . . . . . . . . . 10 ⟨0, ((𝑦 + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩
27 eqneqall 2940 . . . . . . . . . 10 (⟨0, ((𝑦 + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩ → (⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
2826, 27ax-mp 5 . . . . . . . . 9 (⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
2925, 28biimtrdi 253 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3029impd 410 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
3130ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
32 pgnbgreunbgr.g . . . . . . . . . . . 12 𝐺 = (5 gPetersenGr 2)
33 pgnbgreunbgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
34 pgnbgreunbgr.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
35 pgnbgreunbgr.n . . . . . . . . . . . 12 𝑁 = (𝐺 NeighbVtx 𝑋)
3632, 33, 34, 35pgnbgreunbgrlem5lem1 48282 . . . . . . . . . . 11 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸)
3736pm2.21d 121 . . . . . . . . . 10 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
3837expimpd 453 . . . . . . . . 9 (((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
3938ex 412 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4039adantld 490 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4140ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
4232, 33, 34, 35pgnbgreunbgrlem5lem3 48284 . . . . . . . . . . 11 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸)
4342pm2.21d 121 . . . . . . . . . 10 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
4443expimpd 453 . . . . . . . . 9 (((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
4544ex 412 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4645adantld 490 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4746ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
4831, 41, 473jaod 1431 . . . . 5 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
49 prcom 4686 . . . . . . . . . . . 12 {𝐾, ⟨1, 𝑏⟩} = {⟨1, 𝑏⟩, 𝐾}
5049eleq1i 2824 . . . . . . . . . . 11 ({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ↔ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
51 prcom 4686 . . . . . . . . . . . 12 {⟨1, 𝑏⟩, 𝐿} = {𝐿, ⟨1, 𝑏⟩}
5251eleq1i 2824 . . . . . . . . . . 11 ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸)
5350, 52anbi12i 628 . . . . . . . . . 10 (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸))
5432, 33, 34, 35pgnbgreunbgrlem5lem1 48282 . . . . . . . . . . . . 13 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
5554pm2.21d 121 . . . . . . . . . . . 12 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
5655ex 412 . . . . . . . . . . 11 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨1, 𝑏⟩} ∈ 𝐸 → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩)))
5756impcomd 411 . . . . . . . . . 10 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
5853, 57biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
5958ex 412 . . . . . . . 8 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
6059adantld 490 . . . . . . 7 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
6160expcom 413 . . . . . 6 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
62 simpr 484 . . . . . . . . . 10 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → 𝐾 = ⟨1, 𝑦⟩)
63 simpl 482 . . . . . . . . . 10 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → 𝐿 = ⟨1, 𝑦⟩)
6462, 63neeq12d 2990 . . . . . . . . 9 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (𝐾𝐿 ↔ ⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩))
65 eqid 2733 . . . . . . . . . 10 ⟨1, 𝑦⟩ = ⟨1, 𝑦
66 eqneqall 2940 . . . . . . . . . 10 (⟨1, 𝑦⟩ = ⟨1, 𝑦⟩ → (⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
6765, 66ax-mp 5 . . . . . . . . 9 (⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
6864, 67biimtrdi 253 . . . . . . . 8 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
6968impd 410 . . . . . . 7 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
7069ex 412 . . . . . 6 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7132, 33, 34, 35pgnbgreunbgrlem5lem2 48283 . . . . . . . . . . . . 13 ((((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
7271pm2.21d 121 . . . . . . . . . . . 12 ((((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
7372ex 412 . . . . . . . . . . 11 (((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨1, 𝑏⟩} ∈ 𝐸 → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩)))
7473impcomd 411 . . . . . . . . . 10 (((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
7553, 74biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
7675ex 412 . . . . . . . 8 ((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
7776adantld 490 . . . . . . 7 ((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
7877expcom 413 . . . . . 6 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7961, 70, 783jaod 1431 . . . . 5 (𝐿 = ⟨1, 𝑦⟩ → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
8032, 33, 34, 35pgnbgreunbgrlem5lem3 48284 . . . . . . . . . . . . 13 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
8180pm2.21d 121 . . . . . . . . . . . 12 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
8281ex 412 . . . . . . . . . . 11 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨1, 𝑏⟩} ∈ 𝐸 → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩)))
8382impcomd 411 . . . . . . . . . 10 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
8453, 83biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
8584ex 412 . . . . . . . 8 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
8685adantld 490 . . . . . . 7 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
8786expcom 413 . . . . . 6 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
8832, 33, 34, 35pgnbgreunbgrlem5lem2 48283 . . . . . . . . . . 11 ((((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸)
8988pm2.21d 121 . . . . . . . . . 10 ((((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
9089expimpd 453 . . . . . . . . 9 (((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
9190ex 412 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
9291adantld 490 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
9392ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
94 simpr 484 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)
95 simpl 482 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩)
9694, 95neeq12d 2990 . . . . . . . . 9 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 − 1) mod 5)⟩))
97 eqid 2733 . . . . . . . . . 10 ⟨0, ((𝑦 − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩
98 eqneqall 2940 . . . . . . . . . 10 (⟨0, ((𝑦 − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩ → (⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
9997, 98ax-mp 5 . . . . . . . . 9 (⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
10096, 99biimtrdi 253 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
101100impd 410 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
102101ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
10387, 93, 1023jaod 1431 . . . . 5 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
10448, 79, 1033jaoi 1430 . . . 4 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
105104imp 406 . . 3 (((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
10621, 105biimtrdi 253 . 2 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
107106expdcom 414 1 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  wne 2929  {cpr 4579  cop 4583  cfv 6489  (class class class)co 7355  2nd c2nd 7929  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355  2c2 12191  5c5 12194  ..^cfzo 13561   mod cmo 13780  Vtxcvtx 28995  Edgcedg 29046   NeighbVtx cnbgr 29331   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-umgr 29082  df-usgr 29150  df-gpg 48203
This theorem is referenced by:  pgnbgreunbgrlem6  48286
  Copyright terms: Public domain W3C validator