Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem5 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem5 48103
Description: Lemma 5 for pgnbgreunbgr 48105. Impossible cases. (Contributed by AV, 21-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem5 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
Distinct variable groups:   𝑦,𝑏   𝑦,𝐸   𝑦,𝐾   𝑦,𝐿   𝑦,𝑁   𝑦,𝑉   𝑦,𝑋
Allowed substitution hints:   𝐸(𝑏)   𝐺(𝑦,𝑏)   𝐾(𝑏)   𝐿(𝑏)   𝑁(𝑏)   𝑉(𝑏)   𝑋(𝑏)

Proof of Theorem pgnbgreunbgrlem5
StepHypRef Expression
1 c0ex 11174 . . . . . 6 0 ∈ V
2 vex 3454 . . . . . 6 𝑦 ∈ V
31, 2op2ndd 7981 . . . . 5 (𝑋 = ⟨0, 𝑦⟩ → (2nd𝑋) = 𝑦)
43adantr 480 . . . 4 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → (2nd𝑋) = 𝑦)
5 oveq1 7396 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ((2nd𝑋) + 1) = (𝑦 + 1))
65oveq1d 7404 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (((2nd𝑋) + 1) mod 5) = ((𝑦 + 1) mod 5))
76opeq2d 4846 . . . . . . 7 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩)
87eqeq2d 2741 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ↔ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩))
9 opeq2 4840 . . . . . . 7 ((2nd𝑋) = 𝑦 → ⟨1, (2nd𝑋)⟩ = ⟨1, 𝑦⟩)
109eqeq2d 2741 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨1, (2nd𝑋)⟩ ↔ 𝐿 = ⟨1, 𝑦⟩))
11 oveq1 7396 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ((2nd𝑋) − 1) = (𝑦 − 1))
1211oveq1d 7404 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (((2nd𝑋) − 1) mod 5) = ((𝑦 − 1) mod 5))
1312opeq2d 4846 . . . . . . 7 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩)
1413eqeq2d 2741 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩ ↔ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩))
158, 10, 143orbi123d 1437 . . . . 5 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ↔ (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩)))
167eqeq2d 2741 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ↔ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩))
179eqeq2d 2741 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨1, (2nd𝑋)⟩ ↔ 𝐾 = ⟨1, 𝑦⟩))
1813eqeq2d 2741 . . . . . 6 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩ ↔ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))
1916, 17, 183orbi123d 1437 . . . . 5 ((2nd𝑋) = 𝑦 → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ↔ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)))
2015, 19anbi12d 632 . . . 4 ((2nd𝑋) = 𝑦 → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) ↔ ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))))
214, 20syl 17 . . 3 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) ↔ ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩))))
22 simpl 482 . . . . . . . . . . 11 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩)
23 simpr 484 . . . . . . . . . . 11 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩)
2422, 23neeq12d 2987 . . . . . . . . . 10 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩))
2524ancoms 458 . . . . . . . . 9 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩))
26 eqid 2730 . . . . . . . . . 10 ⟨0, ((𝑦 + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩
27 eqneqall 2937 . . . . . . . . . 10 (⟨0, ((𝑦 + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩ → (⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
2826, 27ax-mp 5 . . . . . . . . 9 (⟨0, ((𝑦 + 1) mod 5)⟩ ≠ ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
2925, 28biimtrdi 253 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3029impd 410 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
3130ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
32 pgnbgreunbgr.g . . . . . . . . . . . 12 𝐺 = (5 gPetersenGr 2)
33 pgnbgreunbgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
34 pgnbgreunbgr.e . . . . . . . . . . . 12 𝐸 = (Edg‘𝐺)
35 pgnbgreunbgr.n . . . . . . . . . . . 12 𝑁 = (𝐺 NeighbVtx 𝑋)
3632, 33, 34, 35pgnbgreunbgrlem5lem1 48100 . . . . . . . . . . 11 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸)
3736pm2.21d 121 . . . . . . . . . 10 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
3837expimpd 453 . . . . . . . . 9 (((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
3938ex 412 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4039adantld 490 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4140ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
4232, 33, 34, 35pgnbgreunbgrlem5lem3 48102 . . . . . . . . . . 11 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸)
4342pm2.21d 121 . . . . . . . . . 10 ((((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
4443expimpd 453 . . . . . . . . 9 (((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
4544ex 412 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4645adantld 490 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
4746ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
4831, 41, 473jaod 1431 . . . . 5 (𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
49 prcom 4698 . . . . . . . . . . . 12 {𝐾, ⟨1, 𝑏⟩} = {⟨1, 𝑏⟩, 𝐾}
5049eleq1i 2820 . . . . . . . . . . 11 ({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ↔ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
51 prcom 4698 . . . . . . . . . . . 12 {⟨1, 𝑏⟩, 𝐿} = {𝐿, ⟨1, 𝑏⟩}
5251eleq1i 2820 . . . . . . . . . . 11 ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸)
5350, 52anbi12i 628 . . . . . . . . . 10 (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸))
5432, 33, 34, 35pgnbgreunbgrlem5lem1 48100 . . . . . . . . . . . . 13 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
5554pm2.21d 121 . . . . . . . . . . . 12 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
5655ex 412 . . . . . . . . . . 11 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨1, 𝑏⟩} ∈ 𝐸 → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩)))
5756impcomd 411 . . . . . . . . . 10 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
5853, 57biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
5958ex 412 . . . . . . . 8 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
6059adantld 490 . . . . . . 7 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
6160expcom 413 . . . . . 6 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
62 simpr 484 . . . . . . . . . 10 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → 𝐾 = ⟨1, 𝑦⟩)
63 simpl 482 . . . . . . . . . 10 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → 𝐿 = ⟨1, 𝑦⟩)
6462, 63neeq12d 2987 . . . . . . . . 9 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (𝐾𝐿 ↔ ⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩))
65 eqid 2730 . . . . . . . . . 10 ⟨1, 𝑦⟩ = ⟨1, 𝑦
66 eqneqall 2937 . . . . . . . . . 10 (⟨1, 𝑦⟩ = ⟨1, 𝑦⟩ → (⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
6765, 66ax-mp 5 . . . . . . . . 9 (⟨1, 𝑦⟩ ≠ ⟨1, 𝑦⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
6864, 67biimtrdi 253 . . . . . . . 8 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
6968impd 410 . . . . . . 7 ((𝐿 = ⟨1, 𝑦⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
7069ex 412 . . . . . 6 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7132, 33, 34, 35pgnbgreunbgrlem5lem2 48101 . . . . . . . . . . . . 13 ((((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
7271pm2.21d 121 . . . . . . . . . . . 12 ((((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
7372ex 412 . . . . . . . . . . 11 (((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨1, 𝑏⟩} ∈ 𝐸 → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩)))
7473impcomd 411 . . . . . . . . . 10 (((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
7553, 74biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
7675ex 412 . . . . . . . 8 ((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
7776adantld 490 . . . . . . 7 ((𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐿 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
7877expcom 413 . . . . . 6 (𝐿 = ⟨1, 𝑦⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7961, 70, 783jaod 1431 . . . . 5 (𝐿 = ⟨1, 𝑦⟩ → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
8032, 33, 34, 35pgnbgreunbgrlem5lem3 48102 . . . . . . . . . . . . 13 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐾} ∈ 𝐸)
8180pm2.21d 121 . . . . . . . . . . . 12 ((((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
8281ex 412 . . . . . . . . . . 11 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨1, 𝑏⟩} ∈ 𝐸 → ({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩)))
8382impcomd 411 . . . . . . . . . 10 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({⟨1, 𝑏⟩, 𝐾} ∈ 𝐸 ∧ {𝐿, ⟨1, 𝑏⟩} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
8453, 83biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
8584ex 412 . . . . . . . 8 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
8685adantld 490 . . . . . . 7 ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∧ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
8786expcom 413 . . . . . 6 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
8832, 33, 34, 35pgnbgreunbgrlem5lem2 48101 . . . . . . . . . . 11 ((((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ¬ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸)
8988pm2.21d 121 . . . . . . . . . 10 ((((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸) → ({⟨1, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨1, 𝑏⟩))
9089expimpd 453 . . . . . . . . 9 (((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
9190ex 412 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
9291adantld 490 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
9392ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
94 simpr 484 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)
95 simpl 482 . . . . . . . . . 10 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩)
9694, 95neeq12d 2987 . . . . . . . . 9 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾𝐿 ↔ ⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 − 1) mod 5)⟩))
97 eqid 2730 . . . . . . . . . 10 ⟨0, ((𝑦 − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩
98 eqneqall 2937 . . . . . . . . . 10 (⟨0, ((𝑦 − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩ → (⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
9997, 98ax-mp 5 . . . . . . . . 9 (⟨0, ((𝑦 − 1) mod 5)⟩ ≠ ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
10096, 99biimtrdi 253 . . . . . . . 8 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
101100impd 410 . . . . . . 7 ((𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ ∧ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
102101ex 412 . . . . . 6 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → (𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
10387, 93, 1023jaod 1431 . . . . 5 (𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
10448, 79, 1033jaoi 1430 . . . 4 ((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
105104imp 406 . . 3 (((𝐿 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, 𝑦⟩ ∨ 𝐿 = ⟨0, ((𝑦 − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, ((𝑦 + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, 𝑦⟩ ∨ 𝐾 = ⟨0, ((𝑦 − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
10621, 105biimtrdi 253 . 2 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → (((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) ∧ (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩)) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
107106expdcom 414 1 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2926  {cpr 4593  cop 4597  cfv 6513  (class class class)co 7389  2nd c2nd 7969  0cc0 11074  1c1 11075   + caddc 11077  cmin 11411  2c2 12242  5c5 12245  ..^cfzo 13621   mod cmo 13837  Vtxcvtx 28929  Edgcedg 28980   NeighbVtx cnbgr 29265   gPetersenGr cgpg 48021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-ico 13318  df-fz 13475  df-fzo 13622  df-fl 13760  df-ceil 13761  df-mod 13838  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-dvds 16229  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28922  df-vtx 28931  df-iedg 28932  df-edg 28981  df-umgr 29016  df-usgr 29084  df-gpg 48022
This theorem is referenced by:  pgnbgreunbgrlem6  48104
  Copyright terms: Public domain W3C validator