![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm3.1lem3 | Structured version Visualization version GIF version |
Description: Lemma for jm3.1 38539. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
Ref | Expression |
---|---|
jm3.1.a | ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) |
jm3.1.b | ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) |
jm3.1.c | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
jm3.1.d | ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) |
Ref | Expression |
---|---|
jm3.1lem3 | ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 11761 | . . . . . 6 ⊢ 2 ∈ ℤ | |
2 | jm3.1.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘2)) | |
3 | eluzelz 12002 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
5 | zmulcl 11778 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ) | |
6 | 1, 4, 5 | sylancr 581 | . . . . 5 ⊢ (𝜑 → (2 · 𝐴) ∈ ℤ) |
7 | jm3.1.b | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘2)) | |
8 | eluz2nn 12032 | . . . . . . 7 ⊢ (𝐾 ∈ (ℤ≥‘2) → 𝐾 ∈ ℕ) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ) |
10 | 9 | nnzd 11833 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
11 | 6, 10 | zmulcld 11840 | . . . 4 ⊢ (𝜑 → ((2 · 𝐴) · 𝐾) ∈ ℤ) |
12 | zsqcl 13253 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐾↑2) ∈ ℤ) | |
13 | 10, 12 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐾↑2) ∈ ℤ) |
14 | 11, 13 | zsubcld 11839 | . . 3 ⊢ (𝜑 → (((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ) |
15 | peano2zm 11772 | . . 3 ⊢ ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) ∈ ℤ → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ) |
17 | 0red 10380 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
18 | jm3.1.c | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
19 | 18 | nnnn0d 11702 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
20 | 9, 19 | nnexpcld 13351 | . . . 4 ⊢ (𝜑 → (𝐾↑𝑁) ∈ ℕ) |
21 | 20 | nnred 11391 | . . 3 ⊢ (𝜑 → (𝐾↑𝑁) ∈ ℝ) |
22 | 16 | zred 11834 | . . 3 ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℝ) |
23 | 20 | nngt0d 11424 | . . 3 ⊢ (𝜑 → 0 < (𝐾↑𝑁)) |
24 | jm3.1.d | . . . 4 ⊢ (𝜑 → (𝐾 Yrm (𝑁 + 1)) ≤ 𝐴) | |
25 | 2, 7, 18, 24 | jm3.1lem2 38537 | . . 3 ⊢ (𝜑 → (𝐾↑𝑁) < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) |
26 | 17, 21, 22, 23, 25 | lttrd 10537 | . 2 ⊢ (𝜑 → 0 < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1)) |
27 | elnnz 11738 | . 2 ⊢ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ ↔ (((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℤ ∧ 0 < ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1))) | |
28 | 16, 26, 27 | sylanbrc 578 | 1 ⊢ (𝜑 → ((((2 · 𝐴) · 𝐾) − (𝐾↑2)) − 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 0cc0 10272 1c1 10273 + caddc 10275 · cmul 10277 < clt 10411 ≤ cle 10412 − cmin 10606 ℕcn 11374 2c2 11430 ℤcz 11728 ℤ≥cuz 11992 ↑cexp 13178 Yrm crmy 38418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-omul 7848 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-acn 9101 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-xnn0 11715 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-ioc 12492 df-ico 12493 df-icc 12494 df-fz 12644 df-fzo 12785 df-fl 12912 df-mod 12988 df-seq 13120 df-exp 13179 df-fac 13379 df-bc 13408 df-hash 13436 df-shft 14214 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-limsup 14610 df-clim 14627 df-rlim 14628 df-sum 14825 df-ef 15200 df-sin 15202 df-cos 15203 df-pi 15205 df-dvds 15388 df-gcd 15623 df-numer 15847 df-denom 15848 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-fbas 20139 df-fg 20140 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cld 21231 df-ntr 21232 df-cls 21233 df-nei 21310 df-lp 21348 df-perf 21349 df-cn 21439 df-cnp 21440 df-haus 21527 df-tx 21774 df-hmeo 21967 df-fil 22058 df-fm 22150 df-flim 22151 df-flf 22152 df-xms 22533 df-ms 22534 df-tms 22535 df-cncf 23089 df-limc 24067 df-dv 24068 df-log 24740 df-squarenn 38358 df-pell1qr 38359 df-pell14qr 38360 df-pell1234qr 38361 df-pellfund 38362 df-rmx 38419 df-rmy 38420 |
This theorem is referenced by: jm3.1 38539 expdiophlem1 38540 |
Copyright terms: Public domain | W3C validator |