| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsqrmod | Structured version Visualization version GIF version | ||
| Description: If the Legendre symbol of an integer for an odd prime is 1, then the number is a quadratic residue mod 𝑃. (Contributed by AV, 20-Aug-2021.) |
| Ref | Expression |
|---|---|
| lgsqrmod | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsqr 27238 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ 𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))) | |
| 2 | eldifi 4090 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 3 | prmnn 16620 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ) |
| 5 | 4 | ad2antlr 727 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ) |
| 6 | zsqcl 14070 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ) | |
| 7 | 6 | adantl 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℤ) |
| 8 | simpll 766 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ) | |
| 9 | moddvds 16209 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) | |
| 10 | 5, 7, 8, 9 | syl3anc 1373 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
| 11 | 10 | biimprd 248 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
| 12 | 11 | reximdva 3146 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
| 13 | 12 | adantld 490 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((¬ 𝑃 ∥ 𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
| 14 | 1, 13 | sylbid 240 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3908 {csn 4585 class class class wbr 5102 (class class class)co 7369 1c1 11045 − cmin 11381 ℕcn 12162 2c2 12217 ℤcz 12505 mod cmo 13807 ↑cexp 14002 ∥ cdvds 16198 ℙcprime 16617 /L clgs 27181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 df-phi 16712 df-pc 16784 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-imas 17447 df-qus 17448 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-nsg 19032 df-eqg 19033 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-domn 20580 df-idom 20581 df-drng 20616 df-field 20617 df-lmod 20744 df-lss 20814 df-lsp 20854 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-rsp 21095 df-2idl 21136 df-cnfld 21241 df-zring 21333 df-zrh 21389 df-zn 21392 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-coe1 22043 df-evl1 22179 df-mdeg 25936 df-deg1 25937 df-mon1 26012 df-uc1p 26013 df-q1p 26014 df-r1p 26015 df-lgs 27182 |
| This theorem is referenced by: lgsqrmodndvds 27240 |
| Copyright terms: Public domain | W3C validator |