![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsqrmod | Structured version Visualization version GIF version |
Description: If the Legendre symbol of an integer for an odd prime is 1, then the number is a quadratic residue mod 𝑃. (Contributed by AV, 20-Aug-2021.) |
Ref | Expression |
---|---|
lgsqrmod | ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgsqr 26702 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 ↔ (¬ 𝑃 ∥ 𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)))) | |
2 | eldifi 4087 | . . . . . . . 8 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
3 | prmnn 16551 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ) |
5 | 4 | ad2antlr 726 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ) |
6 | zsqcl 14035 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℤ) | |
7 | 6 | adantl 483 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → (𝑥↑2) ∈ ℤ) |
8 | simpll 766 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ ℤ) | |
9 | moddvds 16148 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ (𝑥↑2) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) | |
10 | 5, 7, 8, 9 | syl3anc 1372 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → (((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃) ↔ 𝑃 ∥ ((𝑥↑2) − 𝐴))) |
11 | 10 | biimprd 248 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑥 ∈ ℤ) → (𝑃 ∥ ((𝑥↑2) − 𝐴) → ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
12 | 11 | reximdva 3166 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
13 | 12 | adantld 492 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((¬ 𝑃 ∥ 𝐴 ∧ ∃𝑥 ∈ ℤ 𝑃 ∥ ((𝑥↑2) − 𝐴)) → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
14 | 1, 13 | sylbid 239 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) = 1 → ∃𝑥 ∈ ℤ ((𝑥↑2) mod 𝑃) = (𝐴 mod 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3074 ∖ cdif 3908 {csn 4587 class class class wbr 5106 (class class class)co 7358 1c1 11053 − cmin 11386 ℕcn 12154 2c2 12209 ℤcz 12500 mod cmo 13775 ↑cexp 13968 ∥ cdvds 16137 ℙcprime 16548 /L clgs 26645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 ax-pre-sup 11130 ax-addf 11131 ax-mulf 11132 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-iin 4958 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-ofr 7619 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-tpos 8158 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-oadd 8417 df-er 8649 df-ec 8651 df-qs 8655 df-map 8768 df-pm 8769 df-ixp 8837 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-fsupp 9307 df-sup 9379 df-inf 9380 df-oi 9447 df-dju 9838 df-card 9876 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-nn 12155 df-2 12217 df-3 12218 df-4 12219 df-5 12220 df-6 12221 df-7 12222 df-8 12223 df-9 12224 df-n0 12415 df-xnn0 12487 df-z 12501 df-dec 12620 df-uz 12765 df-q 12875 df-rp 12917 df-fz 13426 df-fzo 13569 df-fl 13698 df-mod 13776 df-seq 13908 df-exp 13969 df-hash 14232 df-cj 14985 df-re 14986 df-im 14987 df-sqrt 15121 df-abs 15122 df-dvds 16138 df-gcd 16376 df-prm 16549 df-phi 16639 df-pc 16710 df-struct 17020 df-sets 17037 df-slot 17055 df-ndx 17067 df-base 17085 df-ress 17114 df-plusg 17147 df-mulr 17148 df-starv 17149 df-sca 17150 df-vsca 17151 df-ip 17152 df-tset 17153 df-ple 17154 df-ds 17156 df-unif 17157 df-hom 17158 df-cco 17159 df-0g 17324 df-gsum 17325 df-prds 17330 df-pws 17332 df-imas 17391 df-qus 17392 df-mre 17467 df-mrc 17468 df-acs 17470 df-mgm 18498 df-sgrp 18547 df-mnd 18558 df-mhm 18602 df-submnd 18603 df-grp 18752 df-minusg 18753 df-sbg 18754 df-mulg 18874 df-subg 18926 df-nsg 18927 df-eqg 18928 df-ghm 19007 df-cntz 19098 df-cmn 19565 df-abl 19566 df-mgp 19898 df-ur 19915 df-srg 19919 df-ring 19967 df-cring 19968 df-oppr 20050 df-dvdsr 20071 df-unit 20072 df-invr 20102 df-dvr 20113 df-rnghom 20147 df-drng 20188 df-field 20189 df-subrg 20223 df-lmod 20327 df-lss 20396 df-lsp 20436 df-sra 20636 df-rgmod 20637 df-lidl 20638 df-rsp 20639 df-2idl 20705 df-nzr 20731 df-rlreg 20756 df-domn 20757 df-idom 20758 df-cnfld 20800 df-zring 20873 df-zrh 20907 df-zn 20910 df-assa 21262 df-asp 21263 df-ascl 21264 df-psr 21314 df-mvr 21315 df-mpl 21316 df-opsr 21318 df-evls 21485 df-evl 21486 df-psr1 21554 df-vr1 21555 df-ply1 21556 df-coe1 21557 df-evl1 21685 df-mdeg 25420 df-deg1 25421 df-mon1 25498 df-uc1p 25499 df-q1p 25500 df-r1p 25501 df-lgs 26646 |
This theorem is referenced by: lgsqrmodndvds 26704 |
Copyright terms: Public domain | W3C validator |