| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2irrexpq | GIF version | ||
| Description: There exist real numbers
𝑎
and 𝑏 which are not rational such
that (𝑎↑𝑏) is rational. Statement in the
Metamath book, section
1.1.5, footnote 27 on page 17, and the "constructive proof"
for theorem
1.2 of [Bauer], p. 483. This is a
constructive proof because it is
based on two explicitly named non-rational numbers (√‘2) and
(2 logb 9), see sqrt2irr0 12343, 2logb9irr 15233 and
sqrt2cxp2logb9e3 15237. Therefore, this proof is acceptable/usable
in
intuitionistic logic.
For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 15240. (Contributed by AV, 23-Dec-2022.) |
| Ref | Expression |
|---|---|
| 2irrexpq | ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt2irr0 12343 | . 2 ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | |
| 2 | 2logb9irr 15233 | . 2 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | |
| 3 | sqrt2cxp2logb9e3 15237 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | |
| 4 | 3z 9358 | . . . 4 ⊢ 3 ∈ ℤ | |
| 5 | zq 9703 | . . . 4 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 3 ∈ ℚ |
| 7 | 3, 6 | eqeltri 2269 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ |
| 8 | oveq1 5930 | . . . 4 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
| 9 | 8 | eleq1d 2265 | . . 3 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
| 10 | oveq2 5931 | . . . 4 ⊢ (𝑏 = (2 logb 9) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(2 logb 9))) | |
| 11 | 10 | eleq1d 2265 | . . 3 ⊢ (𝑏 = (2 logb 9) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) |
| 12 | 9, 11 | rspc2ev 2883 | . 2 ⊢ (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (2 logb 9) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
| 13 | 1, 2, 7, 12 | mp3an 1348 | 1 ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ∖ cdif 3154 ‘cfv 5259 (class class class)co 5923 ℝcr 7881 2c2 9044 3c3 9045 9c9 9051 ℤcz 9329 ℚcq 9696 √csqrt 11164 ↑𝑐ccxp 15119 logb clogb 15205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 ax-caucvg 8002 ax-pre-suploc 8003 ax-addf 8004 ax-mulf 8005 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-of 6137 df-1st 6200 df-2nd 6201 df-recs 6365 df-irdg 6430 df-frec 6451 df-1o 6476 df-2o 6477 df-oadd 6480 df-er 6594 df-map 6711 df-pm 6712 df-en 6802 df-dom 6803 df-fin 6804 df-sup 7052 df-inf 7053 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 df-9 9059 df-n0 9253 df-z 9330 df-uz 9605 df-q 9697 df-rp 9732 df-xneg 9850 df-xadd 9851 df-ioo 9970 df-ico 9972 df-icc 9973 df-fz 10087 df-fzo 10221 df-fl 10363 df-mod 10418 df-seqfrec 10543 df-exp 10634 df-fac 10821 df-bc 10843 df-ihash 10871 df-shft 10983 df-cj 11010 df-re 11011 df-im 11012 df-rsqrt 11166 df-abs 11167 df-clim 11447 df-sumdc 11522 df-ef 11816 df-e 11817 df-dvds 11956 df-gcd 12132 df-prm 12287 df-rest 12929 df-topgen 12948 df-psmet 14125 df-xmet 14126 df-met 14127 df-bl 14128 df-mopn 14129 df-top 14260 df-topon 14273 df-bases 14305 df-ntr 14358 df-cn 14450 df-cnp 14451 df-tx 14515 df-cncf 14833 df-limced 14918 df-dvap 14919 df-relog 15120 df-rpcxp 15121 df-logb 15206 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |