ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2irrexpq GIF version

Theorem 2irrexpq 15518
Description: There exist real numbers 𝑎 and 𝑏 which are not rational such that (𝑎𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. This is a constructive proof because it is based on two explicitly named non-rational numbers (√‘2) and (2 logb 9), see sqrt2irr0 12556, 2logb9irr 15513 and sqrt2cxp2logb9e3 15517. Therefore, this proof is acceptable/usable in intuitionistic logic.

For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 15520. (Contributed by AV, 23-Dec-2022.)

Assertion
Ref Expression
2irrexpq 𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
Distinct variable group:   𝑎,𝑏

Proof of Theorem 2irrexpq
StepHypRef Expression
1 sqrt2irr0 12556 . 2 (√‘2) ∈ (ℝ ∖ ℚ)
2 2logb9irr 15513 . 2 (2 logb 9) ∈ (ℝ ∖ ℚ)
3 sqrt2cxp2logb9e3 15517 . . 3 ((√‘2)↑𝑐(2 logb 9)) = 3
4 3z 9416 . . . 4 3 ∈ ℤ
5 zq 9762 . . . 4 (3 ∈ ℤ → 3 ∈ ℚ)
64, 5ax-mp 5 . . 3 3 ∈ ℚ
73, 6eqeltri 2279 . 2 ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ
8 oveq1 5963 . . . 4 (𝑎 = (√‘2) → (𝑎𝑐𝑏) = ((√‘2)↑𝑐𝑏))
98eleq1d 2275 . . 3 (𝑎 = (√‘2) → ((𝑎𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ))
10 oveq2 5964 . . . 4 (𝑏 = (2 logb 9) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(2 logb 9)))
1110eleq1d 2275 . . 3 (𝑏 = (2 logb 9) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ))
129, 11rspc2ev 2896 . 2 (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (2 logb 9) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ)
131, 2, 7, 12mp3an 1350 1 𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎𝑐𝑏) ∈ ℚ
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  wrex 2486  cdif 3167  cfv 5279  (class class class)co 5956  cr 7939  2c2 9102  3c3 9103  9c9 9109  cz 9387  cq 9755  csqrt 11377  𝑐ccxp 15399   logb clogb 15485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060  ax-pre-suploc 8061  ax-addf 8062  ax-mulf 8063
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-disj 4027  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-frec 6489  df-1o 6514  df-2o 6515  df-oadd 6518  df-er 6632  df-map 6749  df-pm 6750  df-en 6840  df-dom 6841  df-fin 6842  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-7 9115  df-8 9116  df-9 9117  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-xneg 9909  df-xadd 9910  df-ioo 10029  df-ico 10031  df-icc 10032  df-fz 10146  df-fzo 10280  df-fl 10430  df-mod 10485  df-seqfrec 10610  df-exp 10701  df-fac 10888  df-bc 10910  df-ihash 10938  df-shft 11196  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-clim 11660  df-sumdc 11735  df-ef 12029  df-e 12030  df-dvds 12169  df-gcd 12345  df-prm 12500  df-rest 13143  df-topgen 13162  df-psmet 14375  df-xmet 14376  df-met 14377  df-bl 14378  df-mopn 14379  df-top 14540  df-topon 14553  df-bases 14585  df-ntr 14638  df-cn 14730  df-cnp 14731  df-tx 14795  df-cncf 15113  df-limced 15198  df-dvap 15199  df-relog 15400  df-rpcxp 15401  df-logb 15486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator