| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2irrexpq | GIF version | ||
| Description: There exist real numbers
𝑎
and 𝑏 which are not rational such
that (𝑎↑𝑏) is rational. Statement in the
Metamath book, section
1.1.5, footnote 27 on page 17, and the "constructive proof"
for theorem
1.2 of [Bauer], p. 483. This is a
constructive proof because it is
based on two explicitly named non-rational numbers (√‘2) and
(2 logb 9), see sqrt2irr0 12681, 2logb9irr 15639 and
sqrt2cxp2logb9e3 15643. Therefore, this proof is acceptable/usable
in
intuitionistic logic.
For a theorem which is the same but proves that 𝑎 and 𝑏 are irrational (in the sense of being apart from any rational number), see 2irrexpqap 15646. (Contributed by AV, 23-Dec-2022.) |
| Ref | Expression |
|---|---|
| 2irrexpq | ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqrt2irr0 12681 | . 2 ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | |
| 2 | 2logb9irr 15639 | . 2 ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | |
| 3 | sqrt2cxp2logb9e3 15643 | . . 3 ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | |
| 4 | 3z 9471 | . . . 4 ⊢ 3 ∈ ℤ | |
| 5 | zq 9817 | . . . 4 ⊢ (3 ∈ ℤ → 3 ∈ ℚ) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ 3 ∈ ℚ |
| 7 | 3, 6 | eqeltri 2302 | . 2 ⊢ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ |
| 8 | oveq1 6007 | . . . 4 ⊢ (𝑎 = (√‘2) → (𝑎↑𝑐𝑏) = ((√‘2)↑𝑐𝑏)) | |
| 9 | 8 | eleq1d 2298 | . . 3 ⊢ (𝑎 = (√‘2) → ((𝑎↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐𝑏) ∈ ℚ)) |
| 10 | oveq2 6008 | . . . 4 ⊢ (𝑏 = (2 logb 9) → ((√‘2)↑𝑐𝑏) = ((√‘2)↑𝑐(2 logb 9))) | |
| 11 | 10 | eleq1d 2298 | . . 3 ⊢ (𝑏 = (2 logb 9) → (((√‘2)↑𝑐𝑏) ∈ ℚ ↔ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ)) |
| 12 | 9, 11 | rspc2ev 2922 | . 2 ⊢ (((√‘2) ∈ (ℝ ∖ ℚ) ∧ (2 logb 9) ∈ (ℝ ∖ ℚ) ∧ ((√‘2)↑𝑐(2 logb 9)) ∈ ℚ) → ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ) |
| 13 | 1, 2, 7, 12 | mp3an 1371 | 1 ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ∖ cdif 3194 ‘cfv 5317 (class class class)co 6000 ℝcr 7994 2c2 9157 3c3 9158 9c9 9164 ℤcz 9442 ℚcq 9810 √csqrt 11502 ↑𝑐ccxp 15525 logb clogb 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-pre-suploc 8116 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-2o 6561 df-oadd 6564 df-er 6678 df-map 6795 df-pm 6796 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-ioo 10084 df-ico 10086 df-icc 10087 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-bc 10965 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-e 12155 df-dvds 12294 df-gcd 12470 df-prm 12625 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-tx 14921 df-cncf 15239 df-limced 15324 df-dvap 15325 df-relog 15526 df-rpcxp 15527 df-logb 15612 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |