![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evls1scafv | Structured version Visualization version GIF version |
Description: Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
Ref | Expression |
---|---|
evls1scafv.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1scafv.w | ⊢ 𝑊 = (Poly1‘𝑈) |
evls1scafv.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1scafv.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1scafv.a | ⊢ 𝐴 = (algSc‘𝑊) |
evls1scafv.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1scafv.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evls1scafv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
evls1scafv.1 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
evls1scafv | ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐶) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1scafv.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
2 | evls1scafv.w | . . . 4 ⊢ 𝑊 = (Poly1‘𝑈) | |
3 | evls1scafv.u | . . . 4 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
4 | evls1scafv.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
5 | evls1scafv.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
6 | evls1scafv.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
7 | evls1scafv.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
8 | evls1scafv.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | evls1sca 21768 | . . 3 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
10 | 9 | fveq1d 6879 | . 2 ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐶) = ((𝐵 × {𝑋})‘𝐶)) |
11 | evls1scafv.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
12 | fvconst2g 7186 | . . 3 ⊢ ((𝑋 ∈ 𝑅 ∧ 𝐶 ∈ 𝐵) → ((𝐵 × {𝑋})‘𝐶) = 𝑋) | |
13 | 8, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐵 × {𝑋})‘𝐶) = 𝑋) |
14 | 10, 13 | eqtrd 2771 | 1 ⊢ (𝜑 → ((𝑄‘(𝐴‘𝑋))‘𝐶) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {csn 4621 × cxp 5666 ‘cfv 6531 (class class class)co 7392 Basecbs 17125 ↾s cress 17154 CRingccrg 20014 SubRingcsubrg 20305 algSccascl 21337 Poly1cpl1 21627 evalSub1 ces1 21758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5277 ax-sep 5291 ax-nul 5298 ax-pow 5355 ax-pr 5419 ax-un 7707 ax-cnex 11147 ax-resscn 11148 ax-1cn 11149 ax-icn 11150 ax-addcl 11151 ax-addrcl 11152 ax-mulcl 11153 ax-mulrcl 11154 ax-mulcom 11155 ax-addass 11156 ax-mulass 11157 ax-distr 11158 ax-i2m1 11159 ax-1ne0 11160 ax-1rid 11161 ax-rnegex 11162 ax-rrecex 11163 ax-cnre 11164 ax-pre-lttri 11165 ax-pre-lttrn 11166 ax-pre-ltadd 11167 ax-pre-mulgt0 11168 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3474 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4943 df-iun 4991 df-iin 4992 df-br 5141 df-opab 5203 df-mpt 5224 df-tr 5258 df-id 5566 df-eprel 5572 df-po 5580 df-so 5581 df-fr 5623 df-se 5624 df-we 5625 df-xp 5674 df-rel 5675 df-cnv 5676 df-co 5677 df-dm 5678 df-rn 5679 df-res 5680 df-ima 5681 df-pred 6288 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7348 df-ov 7395 df-oprab 7396 df-mpo 7397 df-of 7652 df-ofr 7653 df-om 7838 df-1st 7956 df-2nd 7957 df-supp 8128 df-frecs 8247 df-wrecs 8278 df-recs 8352 df-rdg 8391 df-1o 8447 df-er 8685 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9344 df-sup 9418 df-oi 9486 df-card 9915 df-pnf 11231 df-mnf 11232 df-xr 11233 df-ltxr 11234 df-le 11235 df-sub 11427 df-neg 11428 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12454 df-z 12540 df-dec 12659 df-uz 12804 df-fz 13466 df-fzo 13609 df-seq 13948 df-hash 14272 df-struct 17061 df-sets 17078 df-slot 17096 df-ndx 17108 df-base 17126 df-ress 17155 df-plusg 17191 df-mulr 17192 df-sca 17194 df-vsca 17195 df-ip 17196 df-tset 17197 df-ple 17198 df-ds 17200 df-hom 17202 df-cco 17203 df-0g 17368 df-gsum 17369 df-prds 17374 df-pws 17376 df-mre 17511 df-mrc 17512 df-acs 17514 df-mgm 18542 df-sgrp 18591 df-mnd 18602 df-mhm 18646 df-submnd 18647 df-grp 18796 df-minusg 18797 df-sbg 18798 df-mulg 18922 df-subg 18974 df-ghm 19055 df-cntz 19146 df-cmn 19613 df-abl 19614 df-mgp 19946 df-ur 19963 df-srg 19967 df-ring 20015 df-cring 20016 df-rnghom 20200 df-subrg 20307 df-lmod 20419 df-lss 20489 df-lsp 20529 df-assa 21338 df-asp 21339 df-ascl 21340 df-psr 21390 df-mvr 21391 df-mpl 21392 df-opsr 21394 df-evls 21561 df-psr1 21630 df-ply1 21632 df-evls1 21760 |
This theorem is referenced by: evls1fpws 32475 evls1maprhm 32582 |
Copyright terms: Public domain | W3C validator |