![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1scad | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1sca.o | β’ π = (eval1βπ ) |
evl1sca.p | β’ π = (Poly1βπ ) |
evl1sca.b | β’ π΅ = (Baseβπ ) |
evl1sca.a | β’ π΄ = (algScβπ) |
evl1scad.u | β’ π = (Baseβπ) |
evl1scad.1 | β’ (π β π β CRing) |
evl1scad.2 | β’ (π β π β π΅) |
evl1scad.3 | β’ (π β π β π΅) |
Ref | Expression |
---|---|
evl1scad | β’ (π β ((π΄βπ) β π β§ ((πβ(π΄βπ))βπ) = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1scad.1 | . . . 4 β’ (π β π β CRing) | |
2 | crngring 20192 | . . . 4 β’ (π β CRing β π β Ring) | |
3 | evl1sca.p | . . . . 5 β’ π = (Poly1βπ ) | |
4 | evl1sca.a | . . . . 5 β’ π΄ = (algScβπ) | |
5 | evl1sca.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
6 | evl1scad.u | . . . . 5 β’ π = (Baseβπ) | |
7 | 3, 4, 5, 6 | ply1sclf 22211 | . . . 4 β’ (π β Ring β π΄:π΅βΆπ) |
8 | 1, 2, 7 | 3syl 18 | . . 3 β’ (π β π΄:π΅βΆπ) |
9 | evl1scad.2 | . . 3 β’ (π β π β π΅) | |
10 | 8, 9 | ffvelcdmd 7100 | . 2 β’ (π β (π΄βπ) β π) |
11 | evl1sca.o | . . . . . 6 β’ π = (eval1βπ ) | |
12 | 11, 3, 5, 4 | evl1sca 22260 | . . . . 5 β’ ((π β CRing β§ π β π΅) β (πβ(π΄βπ)) = (π΅ Γ {π})) |
13 | 1, 9, 12 | syl2anc 582 | . . . 4 β’ (π β (πβ(π΄βπ)) = (π΅ Γ {π})) |
14 | 13 | fveq1d 6904 | . . 3 β’ (π β ((πβ(π΄βπ))βπ) = ((π΅ Γ {π})βπ)) |
15 | evl1scad.3 | . . . 4 β’ (π β π β π΅) | |
16 | fvconst2g 7220 | . . . 4 β’ ((π β π΅ β§ π β π΅) β ((π΅ Γ {π})βπ) = π) | |
17 | 9, 15, 16 | syl2anc 582 | . . 3 β’ (π β ((π΅ Γ {π})βπ) = π) |
18 | 14, 17 | eqtrd 2768 | . 2 β’ (π β ((πβ(π΄βπ))βπ) = π) |
19 | 10, 18 | jca 510 | 1 β’ (π β ((π΄βπ) β π β§ ((πβ(π΄βπ))βπ) = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {csn 4632 Γ cxp 5680 βΆwf 6549 βcfv 6553 Basecbs 17187 Ringcrg 20180 CRingccrg 20181 algSccascl 21793 Poly1cpl1 22103 eval1ce1 22240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-ofr 7692 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-sup 9473 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-hom 17264 df-cco 17265 df-0g 17430 df-gsum 17431 df-prds 17436 df-pws 17438 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-ghm 19175 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-srg 20134 df-ring 20182 df-cring 20183 df-rhm 20418 df-subrng 20490 df-subrg 20515 df-lmod 20752 df-lss 20823 df-lsp 20863 df-assa 21794 df-asp 21795 df-ascl 21796 df-psr 21849 df-mvr 21850 df-mpl 21851 df-opsr 21853 df-evls 22025 df-evl 22026 df-psr1 22106 df-ply1 22108 df-evl1 22242 |
This theorem is referenced by: evl1vsd 22270 evl1gsumd 22283 ply1remlem 26119 idomrootle 26127 lgsqrlem1 27299 aks6d1c1p2 41612 aks6d1c1p3 41613 aks6d1c1p6 41617 evl1gprodd 41620 aks6d1c5lem1 41639 aks6d1c5lem2 41641 evl1at0 47537 evl1at1 47538 lineval 47540 |
Copyright terms: Public domain | W3C validator |