![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasdsf1o | Structured version Visualization version GIF version |
Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
imasdsf1o.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasdsf1o.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasdsf1o.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasdsf1o.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasdsf1o.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasdsf1o.d | ⊢ 𝐷 = (dist‘𝑈) |
imasdsf1o.m | ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
imasdsf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
imasdsf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
imasdsf1o | ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasdsf1o.u | . 2 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasdsf1o.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasdsf1o.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
4 | imasdsf1o.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasdsf1o.e | . 2 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
6 | imasdsf1o.d | . 2 ⊢ 𝐷 = (dist‘𝑈) | |
7 | imasdsf1o.m | . 2 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) | |
8 | imasdsf1o.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
9 | imasdsf1o.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
10 | eqid 2737 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
11 | eqid 2737 | . 2 ⊢ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
12 | eqid 2737 | . 2 ⊢ ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | imasdsf1olem 23609 | 1 ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 {crab 3404 ∖ cdif 3894 {csn 4571 ∪ ciun 4937 ↦ cmpt 5170 × cxp 5606 ran crn 5609 ↾ cres 5610 ∘ ccom 5612 –1-1-onto→wf1o 6465 ‘cfv 6466 (class class class)co 7317 1st c1st 7876 2nd c2nd 7877 ↑m cmap 8665 1c1 10952 + caddc 10954 -∞cmnf 11087 ℝ*cxr 11088 − cmin 11285 ℕcn 12053 ...cfz 13319 Basecbs 16989 ↾s cress 17018 distcds 17048 Σg cgsu 17228 ℝ*𝑠cxrs 17288 “s cimas 17292 ∞Metcxmet 20665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-om 7760 df-1st 7878 df-2nd 7879 df-supp 8027 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fsupp 9206 df-sup 9278 df-inf 9279 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-fz 13320 df-fzo 13463 df-seq 13802 df-hash 14125 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-sca 17055 df-vsca 17056 df-ip 17057 df-tset 17058 df-ple 17059 df-ds 17061 df-0g 17229 df-gsum 17230 df-xrs 17290 df-imas 17296 df-mre 17372 df-mrc 17373 df-acs 17375 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-mulg 18777 df-cntz 18999 df-cmn 19463 df-xmet 20673 |
This theorem is referenced by: imasf1oxmet 23611 imasf1omet 23612 xpsdsval 23617 imasf1obl 23727 |
Copyright terms: Public domain | W3C validator |