![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasdsf1o | Structured version Visualization version GIF version |
Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
imasdsf1o.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasdsf1o.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasdsf1o.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasdsf1o.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasdsf1o.e | ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) |
imasdsf1o.d | ⊢ 𝐷 = (dist‘𝑈) |
imasdsf1o.m | ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) |
imasdsf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
imasdsf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
imasdsf1o | ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasdsf1o.u | . 2 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasdsf1o.v | . 2 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasdsf1o.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
4 | imasdsf1o.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasdsf1o.e | . 2 ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
6 | imasdsf1o.d | . 2 ⊢ 𝐷 = (dist‘𝑈) | |
7 | imasdsf1o.m | . 2 ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) | |
8 | imasdsf1o.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
9 | imasdsf1o.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
10 | eqid 2726 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
11 | eqid 2726 | . 2 ⊢ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
12 | eqid 2726 | . 2 ⊢ ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | imasdsf1olem 24370 | 1 ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 ∖ cdif 3944 {csn 4633 ∪ ciun 5001 ↦ cmpt 5236 × cxp 5680 ran crn 5683 ↾ cres 5684 ∘ ccom 5686 –1-1-onto→wf1o 6553 ‘cfv 6554 (class class class)co 7424 1st c1st 8001 2nd c2nd 8002 ↑m cmap 8855 1c1 11159 + caddc 11161 -∞cmnf 11296 ℝ*cxr 11297 − cmin 11494 ℕcn 12264 ...cfz 13538 Basecbs 17213 ↾s cress 17242 distcds 17275 Σg cgsu 17455 ℝ*𝑠cxrs 17515 “s cimas 17519 ∞Metcxmet 21328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-fz 13539 df-fzo 13682 df-seq 14022 df-hash 14348 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-0g 17456 df-gsum 17457 df-xrs 17517 df-imas 17523 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-xmet 21336 |
This theorem is referenced by: imasf1oxmet 24372 imasf1omet 24373 xpsdsval 24378 imasf1obl 24488 |
Copyright terms: Public domain | W3C validator |