MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsf1o Structured version   Visualization version   GIF version

Theorem imasdsf1o 24371
Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
imasdsf1o.u (𝜑𝑈 = (𝐹s 𝑅))
imasdsf1o.v (𝜑𝑉 = (Base‘𝑅))
imasdsf1o.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasdsf1o.r (𝜑𝑅𝑍)
imasdsf1o.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasdsf1o.d 𝐷 = (dist‘𝑈)
imasdsf1o.m (𝜑𝐸 ∈ (∞Met‘𝑉))
imasdsf1o.x (𝜑𝑋𝑉)
imasdsf1o.y (𝜑𝑌𝑉)
Assertion
Ref Expression
imasdsf1o (𝜑 → ((𝐹𝑋)𝐷(𝐹𝑌)) = (𝑋𝐸𝑌))

Proof of Theorem imasdsf1o
Dummy variables 𝑔 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasdsf1o.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasdsf1o.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasdsf1o.f . 2 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasdsf1o.r . 2 (𝜑𝑅𝑍)
5 imasdsf1o.e . 2 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
6 imasdsf1o.d . 2 𝐷 = (dist‘𝑈)
7 imasdsf1o.m . 2 (𝜑𝐸 ∈ (∞Met‘𝑉))
8 imasdsf1o.x . 2 (𝜑𝑋𝑉)
9 imasdsf1o.y . 2 (𝜑𝑌𝑉)
10 eqid 2726 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
11 eqid 2726 . 2 { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = (𝐹𝑋) ∧ (𝐹‘(2nd ‘(𝑛))) = (𝐹𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} = { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = (𝐹𝑋) ∧ (𝐹‘(2nd ‘(𝑛))) = (𝐹𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
12 eqid 2726 . 2 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = (𝐹𝑋) ∧ (𝐹‘(2nd ‘(𝑛))) = (𝐹𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))) = 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = (𝐹𝑋) ∧ (𝐹‘(2nd ‘(𝑛))) = (𝐹𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12imasdsf1olem 24370 1 (𝜑 → ((𝐹𝑋)𝐷(𝐹𝑌)) = (𝑋𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  wral 3051  {crab 3419  cdif 3944  {csn 4633   ciun 5001  cmpt 5236   × cxp 5680  ran crn 5683  cres 5684  ccom 5686  1-1-ontowf1o 6553  cfv 6554  (class class class)co 7424  1st c1st 8001  2nd c2nd 8002  m cmap 8855  1c1 11159   + caddc 11161  -∞cmnf 11296  *cxr 11297  cmin 11494  cn 12264  ...cfz 13538  Basecbs 17213  s cress 17242  distcds 17275   Σg cgsu 17455  *𝑠cxrs 17515  s cimas 17519  ∞Metcxmet 21328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-0g 17456  df-gsum 17457  df-xrs 17517  df-imas 17523  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-xmet 21336
This theorem is referenced by:  imasf1oxmet  24372  imasf1omet  24373  xpsdsval  24378  imasf1obl  24488
  Copyright terms: Public domain W3C validator