![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgitg2 | Structured version Visualization version GIF version |
Description: Transfer an integral using ∫2 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itgitg2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
itgitg2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) |
itgitg2.3 | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgitg2 | ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgitg2.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) | |
2 | itgitg2.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ 𝐿1) | |
3 | itgitg2.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | itgposval 25843 | . 2 ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, 𝐴, 0)))) |
5 | iftrue 4554 | . . . 4 ⊢ (𝑥 ∈ ℝ → if(𝑥 ∈ ℝ, 𝐴, 0) = 𝐴) | |
6 | 5 | mpteq2ia 5272 | . . 3 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, 𝐴, 0)) = (𝑥 ∈ ℝ ↦ 𝐴) |
7 | 6 | fveq2i 6922 | . 2 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, 𝐴, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴)) |
8 | 4, 7 | eqtrdi 2790 | 1 ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ifcif 4548 class class class wbr 5169 ↦ cmpt 5252 ‘cfv 6572 ℝcr 11179 0cc0 11180 ≤ cle 11321 ∫2citg2 25663 𝐿1cibl 25664 ∫citg 25665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 ax-addf 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-disj 5137 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-ofr 7711 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-2o 8519 df-er 8759 df-map 8882 df-pm 8883 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-sup 9507 df-inf 9508 df-oi 9575 df-dju 9966 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-n0 12550 df-z 12636 df-uz 12900 df-q 13010 df-rp 13054 df-xadd 13172 df-ioo 13407 df-ico 13409 df-icc 13410 df-fz 13564 df-fzo 13708 df-fl 13839 df-mod 13917 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15731 df-xmet 21375 df-met 21376 df-ovol 25511 df-vol 25512 df-mbf 25666 df-itg1 25667 df-itg2 25668 df-ibl 25669 df-itg 25670 df-0p 25717 |
This theorem is referenced by: itgitg1 25856 |
Copyright terms: Public domain | W3C validator |