![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ehl2eudisval | Structured version Visualization version GIF version |
Description: The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
ehl2eudis.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudis.x | ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) |
ehl2eudis.d | ⊢ 𝐷 = (dist‘𝐸) |
Ref | Expression |
---|---|
ehl2eudisval | ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl2eudis.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘2) | |
2 | ehl2eudis.x | . . . 4 ⊢ 𝑋 = (ℝ ↑𝑚 {1, 2}) | |
3 | ehl2eudis.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
4 | 1, 2, 3 | ehl2eudis 23628 | . . 3 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
5 | 4 | oveqi 6935 | . 2 ⊢ (𝐹𝐷𝐺) = (𝐹(𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) |
6 | eqidd 2779 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))) | |
7 | fveq1 6445 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
8 | fveq1 6445 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘1) = (𝐺‘1)) | |
9 | 7, 8 | oveqan12d 6941 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘1) − (𝑔‘1)) = ((𝐹‘1) − (𝐺‘1))) |
10 | 9 | oveq1d 6937 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘1) − (𝑔‘1))↑2) = (((𝐹‘1) − (𝐺‘1))↑2)) |
11 | fveq1 6445 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘2) = (𝐹‘2)) | |
12 | fveq1 6445 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘2) = (𝐺‘2)) | |
13 | 11, 12 | oveqan12d 6941 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘2) − (𝑔‘2)) = ((𝐹‘2) − (𝐺‘2))) |
14 | 13 | oveq1d 6937 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘2) − (𝑔‘2))↑2) = (((𝐹‘2) − (𝐺‘2))↑2)) |
15 | 10, 14 | oveq12d 6940 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)) = ((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) |
16 | 15 | fveq2d 6450 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
17 | 16 | adantl 475 | . . 3 ⊢ (((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
18 | simpl 476 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ 𝑋) | |
19 | simpr 479 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) | |
20 | fvexd 6461 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) ∈ V) | |
21 | 6, 17, 18, 19, 20 | ovmpt2d 7065 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
22 | 5, 21 | syl5eq 2826 | 1 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 {cpr 4400 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 ↑𝑚 cmap 8140 ℝcr 10271 1c1 10273 + caddc 10275 − cmin 10606 2c2 11430 ↑cexp 13178 √csqrt 14380 distcds 16347 𝔼hilcehl 23590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-0g 16488 df-gsum 16489 df-prds 16494 df-pws 16496 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-ghm 18042 df-cntz 18133 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-cring 18937 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-dvr 19070 df-rnghom 19104 df-drng 19141 df-field 19142 df-subrg 19170 df-staf 19237 df-srng 19238 df-lmod 19257 df-lss 19325 df-sra 19569 df-rgmod 19570 df-cnfld 20143 df-refld 20348 df-dsmm 20475 df-frlm 20490 df-nm 22795 df-tng 22797 df-tcph 23376 df-rrx 23591 df-ehl 23592 |
This theorem is referenced by: ehl2eudisval0 43461 2sphere 43485 |
Copyright terms: Public domain | W3C validator |