MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudisval Structured version   Visualization version   GIF version

Theorem ehl2eudisval 24583
Description: The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudisval ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))

Proof of Theorem ehl2eudisval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
2 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
3 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
41, 2, 3ehl2eudis 24582 . . 3 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
54oveqi 7282 . 2 (𝐹𝐷𝐺) = (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺)
6 eqidd 2741 . . 3 ((𝐹𝑋𝐺𝑋) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))))
7 fveq1 6768 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
8 fveq1 6768 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘1) = (𝐺‘1))
97, 8oveqan12d 7288 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘1) − (𝑔‘1)) = ((𝐹‘1) − (𝐺‘1)))
109oveq1d 7284 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘1) − (𝑔‘1))↑2) = (((𝐹‘1) − (𝐺‘1))↑2))
11 fveq1 6768 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘2) = (𝐹‘2))
12 fveq1 6768 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘2) = (𝐺‘2))
1311, 12oveqan12d 7288 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘2) − (𝑔‘2)) = ((𝐹‘2) − (𝐺‘2)))
1413oveq1d 7284 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘2) − (𝑔‘2))↑2) = (((𝐹‘2) − (𝐺‘2))↑2))
1510, 14oveq12d 7287 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)) = ((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))
1615fveq2d 6773 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
1716adantl 482 . . 3 (((𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
18 simpl 483 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐹𝑋)
19 simpr 485 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐺𝑋)
20 fvexd 6784 . . 3 ((𝐹𝑋𝐺𝑋) → (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) ∈ V)
216, 17, 18, 19, 20ovmpod 7417 . 2 ((𝐹𝑋𝐺𝑋) → (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
225, 21eqtrid 2792 1 ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  {cpr 4569  cfv 6431  (class class class)co 7269  cmpo 7271  m cmap 8596  cr 10869  1c1 10871   + caddc 10873  cmin 11203  2c2 12026  cexp 13778  csqrt 14940  distcds 16967  𝔼hilcehl 24544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948  ax-addf 10949  ax-mulf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-tpos 8031  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-map 8598  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fsupp 9105  df-sup 9177  df-oi 9245  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-rp 12728  df-fz 13237  df-fzo 13380  df-seq 13718  df-exp 13779  df-hash 14041  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-clim 15193  df-sum 15394  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-starv 16973  df-sca 16974  df-vsca 16975  df-ip 16976  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-hom 16982  df-cco 16983  df-0g 17148  df-gsum 17149  df-prds 17154  df-pws 17156  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-mhm 18426  df-grp 18576  df-minusg 18577  df-sbg 18578  df-subg 18748  df-ghm 18828  df-cntz 18919  df-cmn 19384  df-abl 19385  df-mgp 19717  df-ur 19734  df-ring 19781  df-cring 19782  df-oppr 19858  df-dvdsr 19879  df-unit 19880  df-invr 19910  df-dvr 19921  df-rnghom 19955  df-drng 19989  df-field 19990  df-subrg 20018  df-staf 20101  df-srng 20102  df-lmod 20121  df-lss 20190  df-sra 20430  df-rgmod 20431  df-cnfld 20594  df-refld 20806  df-dsmm 20935  df-frlm 20950  df-nm 23734  df-tng 23736  df-tcph 24329  df-rrx 24545  df-ehl 24546
This theorem is referenced by:  ehl2eudisval0  46038  2sphere  46062
  Copyright terms: Public domain W3C validator