MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudisval Structured version   Visualization version   GIF version

Theorem ehl2eudisval 23629
Description: The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑𝑚 {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudisval ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))

Proof of Theorem ehl2eudisval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
2 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑𝑚 {1, 2})
3 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
41, 2, 3ehl2eudis 23628 . . 3 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
54oveqi 6935 . 2 (𝐹𝐷𝐺) = (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺)
6 eqidd 2779 . . 3 ((𝐹𝑋𝐺𝑋) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))))
7 fveq1 6445 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
8 fveq1 6445 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘1) = (𝐺‘1))
97, 8oveqan12d 6941 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘1) − (𝑔‘1)) = ((𝐹‘1) − (𝐺‘1)))
109oveq1d 6937 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘1) − (𝑔‘1))↑2) = (((𝐹‘1) − (𝐺‘1))↑2))
11 fveq1 6445 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘2) = (𝐹‘2))
12 fveq1 6445 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘2) = (𝐺‘2))
1311, 12oveqan12d 6941 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘2) − (𝑔‘2)) = ((𝐹‘2) − (𝐺‘2)))
1413oveq1d 6937 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘2) − (𝑔‘2))↑2) = (((𝐹‘2) − (𝐺‘2))↑2))
1510, 14oveq12d 6940 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)) = ((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))
1615fveq2d 6450 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
1716adantl 475 . . 3 (((𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
18 simpl 476 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐹𝑋)
19 simpr 479 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐺𝑋)
20 fvexd 6461 . . 3 ((𝐹𝑋𝐺𝑋) → (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) ∈ V)
216, 17, 18, 19, 20ovmpt2d 7065 . 2 ((𝐹𝑋𝐺𝑋) → (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
225, 21syl5eq 2826 1 ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  Vcvv 3398  {cpr 4400  cfv 6135  (class class class)co 6922  cmpt2 6924  𝑚 cmap 8140  cr 10271  1c1 10273   + caddc 10275  cmin 10606  2c2 11430  cexp 13178  csqrt 14380  distcds 16347  𝔼hilcehl 23590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-0g 16488  df-gsum 16489  df-prds 16494  df-pws 16496  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-rnghom 19104  df-drng 19141  df-field 19142  df-subrg 19170  df-staf 19237  df-srng 19238  df-lmod 19257  df-lss 19325  df-sra 19569  df-rgmod 19570  df-cnfld 20143  df-refld 20348  df-dsmm 20475  df-frlm 20490  df-nm 22795  df-tng 22797  df-tcph 23376  df-rrx 23591  df-ehl 23592
This theorem is referenced by:  ehl2eudisval0  43461  2sphere  43485
  Copyright terms: Public domain W3C validator