MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudisval Structured version   Visualization version   GIF version

Theorem ehl2eudisval 25395
Description: The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudisval ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))

Proof of Theorem ehl2eudisval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
2 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
3 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
41, 2, 3ehl2eudis 25394 . . 3 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
54oveqi 7432 . 2 (𝐹𝐷𝐺) = (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺)
6 eqidd 2726 . . 3 ((𝐹𝑋𝐺𝑋) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))))
7 fveq1 6895 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
8 fveq1 6895 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘1) = (𝐺‘1))
97, 8oveqan12d 7438 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘1) − (𝑔‘1)) = ((𝐹‘1) − (𝐺‘1)))
109oveq1d 7434 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘1) − (𝑔‘1))↑2) = (((𝐹‘1) − (𝐺‘1))↑2))
11 fveq1 6895 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘2) = (𝐹‘2))
12 fveq1 6895 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘2) = (𝐺‘2))
1311, 12oveqan12d 7438 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘2) − (𝑔‘2)) = ((𝐹‘2) − (𝐺‘2)))
1413oveq1d 7434 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘2) − (𝑔‘2))↑2) = (((𝐹‘2) − (𝐺‘2))↑2))
1510, 14oveq12d 7437 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)) = ((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))
1615fveq2d 6900 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
1716adantl 480 . . 3 (((𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
18 simpl 481 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐹𝑋)
19 simpr 483 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐺𝑋)
20 fvexd 6911 . . 3 ((𝐹𝑋𝐺𝑋) → (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) ∈ V)
216, 17, 18, 19, 20ovmpod 7573 . 2 ((𝐹𝑋𝐺𝑋) → (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
225, 21eqtrid 2777 1 ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  {cpr 4632  cfv 6549  (class class class)co 7419  cmpo 7421  m cmap 8845  cr 11139  1c1 11141   + caddc 11143  cmin 11476  2c2 12300  cexp 14062  csqrt 15216  distcds 17245  𝔼hilcehl 25356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-drng 20638  df-field 20639  df-staf 20737  df-srng 20738  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-cnfld 21297  df-refld 21554  df-dsmm 21683  df-frlm 21698  df-nm 24535  df-tng 24537  df-tcph 25141  df-rrx 25357  df-ehl 25358
This theorem is referenced by:  ehl2eudisval0  47981  2sphere  48005
  Copyright terms: Public domain W3C validator