Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem2 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem2 48279
Description: Lemma 2 for pgnbgreunbgr 48287. Impossible cases. (Contributed by AV, 18-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem2 ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐿 = ⟨0, (2nd𝑋)⟩ ∨ 𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
Distinct variable group:   𝑦,𝑏
Allowed substitution hints:   𝐸(𝑦,𝑏)   𝐺(𝑦,𝑏)   𝐾(𝑦,𝑏)   𝐿(𝑦,𝑏)   𝑁(𝑦,𝑏)   𝑉(𝑦,𝑏)   𝑋(𝑦,𝑏)

Proof of Theorem pgnbgreunbgrlem2
StepHypRef Expression
1 eqtr3 2755 . . . . . 6 ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) → 𝐿 = 𝐾)
2 eqneqall 2940 . . . . . . . 8 (𝐾 = 𝐿 → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
32impd 410 . . . . . . 7 (𝐾 = 𝐿 → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
43eqcoms 2741 . . . . . 6 (𝐿 = 𝐾 → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
51, 4syl 17 . . . . 5 ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
65a1d 25 . . . 4 ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
76ex 412 . . 3 (𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ → (𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
8 1ex 11119 . . . . . . . 8 1 ∈ V
9 vex 3441 . . . . . . . 8 𝑦 ∈ V
108, 9op2ndd 7941 . . . . . . 7 (𝑋 = ⟨1, 𝑦⟩ → (2nd𝑋) = 𝑦)
11 oveq1 7362 . . . . . . . . . . 11 ((2nd𝑋) = 𝑦 → ((2nd𝑋) + 2) = (𝑦 + 2))
1211oveq1d 7370 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → (((2nd𝑋) + 2) mod 5) = ((𝑦 + 2) mod 5))
1312opeq2d 4833 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ⟨1, (((2nd𝑋) + 2) mod 5)⟩ = ⟨1, ((𝑦 + 2) mod 5)⟩)
1413eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ↔ 𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩))
15 opeq2 4827 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ⟨0, (2nd𝑋)⟩ = ⟨0, 𝑦⟩)
1615eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨0, (2nd𝑋)⟩ ↔ 𝐾 = ⟨0, 𝑦⟩))
1714, 16anbi12d 632 . . . . . . 7 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) ↔ (𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩)))
1810, 17syl 17 . . . . . 6 (𝑋 = ⟨1, 𝑦⟩ → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) ↔ (𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩)))
19 pgnbgreunbgr.g . . . . . . . . . . 11 𝐺 = (5 gPetersenGr 2)
20 pgnbgreunbgr.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
21 pgnbgreunbgr.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
22 pgnbgreunbgr.n . . . . . . . . . . 11 𝑁 = (𝐺 NeighbVtx 𝑋)
2319, 20, 21, 22pgnbgreunbgrlem2lem1 48276 . . . . . . . . . 10 ((((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)
2423pm2.21d 121 . . . . . . . . 9 ((((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
2524expimpd 453 . . . . . . . 8 (((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
2625ex 412 . . . . . . 7 ((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
2726adantld 490 . . . . . 6 ((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
2818, 27biimtrdi 253 . . . . 5 (𝑋 = ⟨1, 𝑦⟩ → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
2928adantr 480 . . . 4 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
3029expdcom 414 . . 3 (𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ → (𝐾 = ⟨0, (2nd𝑋)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
31 oveq1 7362 . . . . . . . . . . 11 ((2nd𝑋) = 𝑦 → ((2nd𝑋) − 2) = (𝑦 − 2))
3231oveq1d 7370 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → (((2nd𝑋) − 2) mod 5) = ((𝑦 − 2) mod 5))
3332opeq2d 4833 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → ⟨1, (((2nd𝑋) − 2) mod 5)⟩ = ⟨1, ((𝑦 − 2) mod 5)⟩)
3433eqeq2d 2744 . . . . . . . 8 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ↔ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩))
3514, 34anbi12d 632 . . . . . . 7 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) ↔ (𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩)))
3610, 35syl 17 . . . . . 6 (𝑋 = ⟨1, 𝑦⟩ → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) ↔ (𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩)))
3719, 20, 21, 22pgnbgreunbgrlem2lem3 48278 . . . . . . . . . 10 ((((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)
3837pm2.21d 121 . . . . . . . . 9 ((((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
3938expimpd 453 . . . . . . . 8 (((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
4039ex 412 . . . . . . 7 ((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
4140adantld 490 . . . . . 6 ((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
4236, 41biimtrdi 253 . . . . 5 (𝑋 = ⟨1, 𝑦⟩ → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4342adantr 480 . . . 4 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4443expdcom 414 . . 3 (𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ → (𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
457, 30, 443jaod 1431 . 2 (𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
4610adantr 480 . . . . . 6 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → (2nd𝑋) = 𝑦)
4715eqeq2d 2744 . . . . . . 7 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨0, (2nd𝑋)⟩ ↔ 𝐿 = ⟨0, 𝑦⟩))
4813eqeq2d 2744 . . . . . . 7 ((2nd𝑋) = 𝑦 → (𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ↔ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩))
4947, 48anbi12d 632 . . . . . 6 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) ↔ (𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩)))
5046, 49syl 17 . . . . 5 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) ↔ (𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩)))
51 prcom 4686 . . . . . . . . . . 11 {⟨0, 𝑏⟩, 𝐿} = {𝐿, ⟨0, 𝑏⟩}
5251eleq1i 2824 . . . . . . . . . 10 ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {𝐿, ⟨0, 𝑏⟩} ∈ 𝐸)
5319, 20, 21, 22pgnbgreunbgrlem2lem1 48276 . . . . . . . . . . . 12 ((((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐾} ∈ 𝐸)
54 prcom 4686 . . . . . . . . . . . . . 14 {𝐾, ⟨0, 𝑏⟩} = {⟨0, 𝑏⟩, 𝐾}
5554eleq1i 2824 . . . . . . . . . . . . 13 ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, 𝐾} ∈ 𝐸)
56 pm2.21 123 . . . . . . . . . . . . 13 (¬ {⟨0, 𝑏⟩, 𝐾} ∈ 𝐸 → ({⟨0, 𝑏⟩, 𝐾} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
5755, 56biimtrid 242 . . . . . . . . . . . 12 (¬ {⟨0, 𝑏⟩, 𝐾} ∈ 𝐸 → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
5853, 57syl 17 . . . . . . . . . . 11 ((((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨0, 𝑏⟩} ∈ 𝐸) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
5958ex 412 . . . . . . . . . 10 (((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨0, 𝑏⟩} ∈ 𝐸 → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩)))
6052, 59biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩)))
6160impcomd 411 . . . . . . . 8 (((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
6261ex 412 . . . . . . 7 ((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
6362ancoms 458 . . . . . 6 ((𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
6463adantld 490 . . . . 5 ((𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
6550, 64biimtrdi 253 . . . 4 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
6665expdcom 414 . . 3 (𝐿 = ⟨0, (2nd𝑋)⟩ → (𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
67 eqtr3 2755 . . . . . . . 8 ((𝐾 = ⟨0, (2nd𝑋)⟩ ∧ 𝐿 = ⟨0, (2nd𝑋)⟩) → 𝐾 = 𝐿)
6867ancoms 458 . . . . . . 7 ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) → 𝐾 = 𝐿)
6968, 2syl 17 . . . . . 6 ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7069impd 410 . . . . 5 ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
7170a1d 25 . . . 4 ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7271ex 412 . . 3 (𝐿 = ⟨0, (2nd𝑋)⟩ → (𝐾 = ⟨0, (2nd𝑋)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
7347, 34anbi12d 632 . . . . . 6 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) ↔ (𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩)))
7446, 73syl 17 . . . . 5 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) ↔ (𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩)))
7519, 20, 21, 22pgnbgreunbgrlem2lem2 48277 . . . . . . . . . . . 12 ((((𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐾} ∈ 𝐸)
7675, 57syl 17 . . . . . . . . . . 11 ((((𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨0, 𝑏⟩} ∈ 𝐸) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
7776ex 412 . . . . . . . . . 10 (((𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨0, 𝑏⟩} ∈ 𝐸 → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩)))
7852, 77biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩)))
7978impcomd 411 . . . . . . . 8 (((𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
8079ex 412 . . . . . . 7 ((𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐿 = ⟨0, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
8180ancoms 458 . . . . . 6 ((𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
8281adantld 490 . . . . 5 ((𝐿 = ⟨0, 𝑦⟩ ∧ 𝐾 = ⟨1, ((𝑦 − 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
8374, 82biimtrdi 253 . . . 4 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨0, (2nd𝑋)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
8483expdcom 414 . . 3 (𝐿 = ⟨0, (2nd𝑋)⟩ → (𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
8566, 72, 843jaod 1431 . 2 (𝐿 = ⟨0, (2nd𝑋)⟩ → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
8633eqeq2d 2744 . . . . . . 7 ((2nd𝑋) = 𝑦 → (𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ↔ 𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩))
8786, 48anbi12d 632 . . . . . 6 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) ↔ (𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩)))
8846, 87syl 17 . . . . 5 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) ↔ (𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩)))
8919, 20, 21, 22pgnbgreunbgrlem2lem3 48278 . . . . . . . . . . . 12 ((((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐾} ∈ 𝐸)
9089, 57syl 17 . . . . . . . . . . 11 ((((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐿, ⟨0, 𝑏⟩} ∈ 𝐸) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
9190ex 412 . . . . . . . . . 10 (((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐿, ⟨0, 𝑏⟩} ∈ 𝐸 → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩)))
9252, 91biimtrid 242 . . . . . . . . 9 (((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩)))
9392impcomd 411 . . . . . . . 8 (((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
9493ex 412 . . . . . . 7 ((𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
9594ancoms 458 . . . . . 6 ((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
9695adantld 490 . . . . 5 ((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, ((𝑦 + 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
9788, 96biimtrdi 253 . . . 4 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
9897expdcom 414 . . 3 (𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ → (𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
9986, 16anbi12d 632 . . . . . 6 ((2nd𝑋) = 𝑦 → ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) ↔ (𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩)))
10046, 99syl 17 . . . . 5 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) ↔ (𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩)))
10119, 20, 21, 22pgnbgreunbgrlem2lem2 48277 . . . . . . . . 9 ((((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)
102101pm2.21d 121 . . . . . . . 8 ((((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸𝑋 = ⟨0, 𝑏⟩))
103102expimpd 453 . . . . . . 7 (((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
104103ex 412 . . . . . 6 ((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
105104adantld 490 . . . . 5 ((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
106100, 105biimtrdi 253 . . . 4 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, (2nd𝑋)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
107106expdcom 414 . . 3 (𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ → (𝐾 = ⟨0, (2nd𝑋)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
108 eqtr3 2755 . . . . . . 7 ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → 𝐿 = 𝐾)
109108eqcomd 2739 . . . . . 6 ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → 𝐾 = 𝐿)
110109, 3syl 17 . . . . 5 ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
111110a1d 25 . . . 4 ((𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ ∧ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
112111ex 412 . . 3 (𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ → (𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
11398, 107, 1123jaod 1431 . 2 (𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩ → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
11445, 85, 1133jaoi 1430 1 ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐿 = ⟨0, (2nd𝑋)⟩ ∨ 𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  wne 2929  {cpr 4579  cop 4583  cfv 6489  (class class class)co 7355  2nd c2nd 7929  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355  2c2 12191  5c5 12194  ..^cfzo 13561   mod cmo 13780  Vtxcvtx 28995  Edgcedg 29046   NeighbVtx cnbgr 29331   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-hash 14245  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-umgr 29082  df-usgr 29150  df-gpg 48203
This theorem is referenced by:  pgnbgreunbgrlem3  48280
  Copyright terms: Public domain W3C validator