Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem2lem1 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem2lem1 48145
Description: Lemma 1 for pgnbgreunbgrlem2 48148. (Contributed by AV, 16-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem2lem1 ((((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)
Distinct variable group:   𝑦,𝑏
Allowed substitution hints:   𝐸(𝑦,𝑏)   𝐺(𝑦,𝑏)   𝐾(𝑦,𝑏)   𝐿(𝑦,𝑏)   𝑁(𝑦,𝑏)   𝑉(𝑦,𝑏)   𝑋(𝑦,𝑏)

Proof of Theorem pgnbgreunbgrlem2lem1
StepHypRef Expression
1 5eluz3 12776 . . . . . . . 8 5 ∈ (ℤ‘3)
2 pglem 48122 . . . . . . . 8 2 ∈ (1..^(⌈‘(5 / 2)))
31, 2pm3.2i 470 . . . . . . 7 (5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2))))
4 c0ex 11101 . . . . . . . 8 0 ∈ V
5 vex 3440 . . . . . . . 8 𝑦 ∈ V
64, 5op1st 7924 . . . . . . 7 (1st ‘⟨0, 𝑦⟩) = 0
7 simpr 484 . . . . . . 7 (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸) → {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸)
8 eqid 2731 . . . . . . . 8 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
9 pgnbgreunbgr.g . . . . . . . 8 𝐺 = (5 gPetersenGr 2)
10 pgnbgreunbgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
11 pgnbgreunbgr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
128, 9, 10, 11gpgvtxedg0 48094 . . . . . . 7 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (1st ‘⟨0, 𝑦⟩) = 0 ∧ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸) → (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩))
133, 6, 7, 12mp3an12i 1467 . . . . . 6 (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸) → (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩))
1413ex 412 . . . . 5 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)))
15 vex 3440 . . . . . . . . . 10 𝑏 ∈ V
164, 15op1st 7924 . . . . . . . . 9 (1st ‘⟨0, 𝑏⟩) = 0
178, 9, 10, 11gpgvtxedg0 48094 . . . . . . . . 9 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (1st ‘⟨0, 𝑏⟩) = 0 ∧ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸) → (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ∨ ⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ∨ ⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩))
183, 16, 17mp3an12 1453 . . . . . . . 8 ({⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸 → (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ∨ ⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ∨ ⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩))
19 1ex 11103 . . . . . . . . . . 11 1 ∈ V
20 ovex 7374 . . . . . . . . . . 11 ((𝑦 + 2) mod 5) ∈ V
2119, 20opth 5411 . . . . . . . . . 10 (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ↔ (1 = 0 ∧ ((𝑦 + 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)))
22 ax-1ne0 11070 . . . . . . . . . . . 12 1 ≠ 0
23 eqneqall 2939 . . . . . . . . . . . 12 (1 = 0 → (1 ≠ 0 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
2422, 23mpi 20 . . . . . . . . . . 11 (1 = 0 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
2524adantr 480 . . . . . . . . . 10 ((1 = 0 ∧ ((𝑦 + 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
2621, 25sylbi 217 . . . . . . . . 9 (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
2719, 20opth 5411 . . . . . . . . . 10 (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ↔ (1 = 1 ∧ ((𝑦 + 2) mod 5) = (2nd ‘⟨0, 𝑏⟩)))
284, 15op2nd 7925 . . . . . . . . . . . . 13 (2nd ‘⟨0, 𝑏⟩) = 𝑏
2928eqeq2i 2744 . . . . . . . . . . . 12 (((𝑦 + 2) mod 5) = (2nd ‘⟨0, 𝑏⟩) ↔ ((𝑦 + 2) mod 5) = 𝑏)
30 eqcom 2738 . . . . . . . . . . . 12 (((𝑦 + 2) mod 5) = 𝑏𝑏 = ((𝑦 + 2) mod 5))
3129, 30bitri 275 . . . . . . . . . . 11 (((𝑦 + 2) mod 5) = (2nd ‘⟨0, 𝑏⟩) ↔ 𝑏 = ((𝑦 + 2) mod 5))
324, 5op2nd 7925 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘⟨0, 𝑦⟩) = 𝑦
3332oveq1i 7351 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘⟨0, 𝑦⟩) + 1) = (𝑦 + 1)
3433oveq1i 7351 . . . . . . . . . . . . . . . . . 18 (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5) = ((𝑦 + 1) mod 5)
3534opeq2i 4824 . . . . . . . . . . . . . . . . 17 ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩
3635eqeq2i 2744 . . . . . . . . . . . . . . . 16 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ↔ ⟨0, 𝑏⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩)
374, 15opth 5411 . . . . . . . . . . . . . . . 16 (⟨0, 𝑏⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩ ↔ (0 = 0 ∧ 𝑏 = ((𝑦 + 1) mod 5)))
3836, 37bitri 275 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ↔ (0 = 0 ∧ 𝑏 = ((𝑦 + 1) mod 5)))
39 eqeq1 2735 . . . . . . . . . . . . . . . . . 18 (𝑏 = ((𝑦 + 1) mod 5) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5)))
4039adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5)))
41 eqcom 2738 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5))
4241a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5)))
43 elfzoelz 13554 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → 𝑦 ∈ ℤ)
44 2z 12499 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → 2 ∈ ℤ)
4643, 45zaddcld 12576 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (𝑦 + 2) ∈ ℤ)
47 1zzd 12498 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → 1 ∈ ℤ)
4843, 47zaddcld 12576 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (𝑦 + 1) ∈ ℤ)
49 5nn 12206 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℕ
5049a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → 5 ∈ ℕ)
51 difmod0 16193 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 2) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ ∧ 5 ∈ ℕ) → ((((𝑦 + 2) − (𝑦 + 1)) mod 5) = 0 ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5)))
5246, 48, 50, 51syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → ((((𝑦 + 2) − (𝑦 + 1)) mod 5) = 0 ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5)))
5343zcnd 12573 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → 𝑦 ∈ ℂ)
54 2cnd 12198 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → 2 ∈ ℂ)
55 1cnd 11102 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → 1 ∈ ℂ)
5653, 54, 55pnpcand 11504 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^5) → ((𝑦 + 2) − (𝑦 + 1)) = (2 − 1))
57 2m1e1 12241 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
5856, 57eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → ((𝑦 + 2) − (𝑦 + 1)) = 1)
5958oveq1d 7356 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (((𝑦 + 2) − (𝑦 + 1)) mod 5) = (1 mod 5))
6059eqeq1d 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → ((((𝑦 + 2) − (𝑦 + 1)) mod 5) = 0 ↔ (1 mod 5) = 0))
6142, 52, 603bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) ↔ (1 mod 5) = 0))
62 1re 11107 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
63 5rp 12892 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℝ+
64 0le1 11635 . . . . . . . . . . . . . . . . . . . . . 22 0 ≤ 1
65 1lt5 12295 . . . . . . . . . . . . . . . . . . . . . 22 1 < 5
66 modid 13795 . . . . . . . . . . . . . . . . . . . . . 22 (((1 ∈ ℝ ∧ 5 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 5)) → (1 mod 5) = 1)
6762, 63, 64, 65, 66mp4an 693 . . . . . . . . . . . . . . . . . . . . 21 (1 mod 5) = 1
6867eqeq1i 2736 . . . . . . . . . . . . . . . . . . . 20 ((1 mod 5) = 0 ↔ 1 = 0)
69 eqneqall 2939 . . . . . . . . . . . . . . . . . . . . 21 (1 = 0 → (1 ≠ 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
7022, 69mpi 20 . . . . . . . . . . . . . . . . . . . 20 (1 = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)
7168, 70sylbi 217 . . . . . . . . . . . . . . . . . . 19 ((1 mod 5) = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)
7261, 71biimtrdi 253 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
7372ad2antll 729 . . . . . . . . . . . . . . . . 17 ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
7440, 73sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
7574ex 412 . . . . . . . . . . . . . . 15 (𝑏 = ((𝑦 + 1) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
7638, 75simplbiim 504 . . . . . . . . . . . . . 14 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
774, 15opth 5411 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ↔ (0 = 1 ∧ 𝑏 = (2nd ‘⟨0, 𝑦⟩)))
78 0ne1 12191 . . . . . . . . . . . . . . . . 17 0 ≠ 1
79 eqneqall 2939 . . . . . . . . . . . . . . . . 17 (0 = 1 → (0 ≠ 1 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))))
8078, 79mpi 20 . . . . . . . . . . . . . . . 16 (0 = 1 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
8180adantr 480 . . . . . . . . . . . . . . 15 ((0 = 1 ∧ 𝑏 = (2nd ‘⟨0, 𝑦⟩)) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
8277, 81sylbi 217 . . . . . . . . . . . . . 14 (⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
8332oveq1i 7351 . . . . . . . . . . . . . . . . . 18 ((2nd ‘⟨0, 𝑦⟩) − 1) = (𝑦 − 1)
8483oveq1i 7351 . . . . . . . . . . . . . . . . 17 (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5) = ((𝑦 − 1) mod 5)
8584opeq2i 4824 . . . . . . . . . . . . . . . 16 ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩
8685eqeq2i 2744 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩ ↔ ⟨0, 𝑏⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩)
874, 15opth 5411 . . . . . . . . . . . . . . . 16 (⟨0, 𝑏⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩ ↔ (0 = 0 ∧ 𝑏 = ((𝑦 − 1) mod 5)))
88 eqeq1 2735 . . . . . . . . . . . . . . . . . . 19 (𝑏 = ((𝑦 − 1) mod 5) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5)))
8988adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5)))
9043, 47zsubcld 12577 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (𝑦 − 1) ∈ ℤ)
91 difmod0 16193 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 − 1) ∈ ℤ ∧ (𝑦 + 2) ∈ ℤ ∧ 5 ∈ ℕ) → ((((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0 ↔ ((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5)))
9291bicomd 223 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 1) ∈ ℤ ∧ (𝑦 + 2) ∈ ℤ ∧ 5 ∈ ℕ) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) ↔ (((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0))
9390, 46, 50, 92syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) ↔ (((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0))
9453, 55, 53, 54subsubadd23 11519 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → ((𝑦 − 1) − (𝑦 + 2)) = ((𝑦𝑦) − (1 + 2)))
9553subidd 11455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^5) → (𝑦𝑦) = 0)
96 1p2e3 12258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1 + 2) = 3
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^5) → (1 + 2) = 3)
9895, 97oveq12d 7359 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0..^5) → ((𝑦𝑦) − (1 + 2)) = (0 − 3))
99 df-neg 11342 . . . . . . . . . . . . . . . . . . . . . . . . 25 -3 = (0 − 3)
10098, 99eqtr4di 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → ((𝑦𝑦) − (1 + 2)) = -3)
10194, 100eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^5) → ((𝑦 − 1) − (𝑦 + 2)) = -3)
102101oveq1d 7356 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → (((𝑦 − 1) − (𝑦 + 2)) mod 5) = (-3 mod 5))
103102eqeq1d 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → ((((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0 ↔ (-3 mod 5) = 0))
104 3re 12200 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℝ
105 negmod0 13777 . . . . . . . . . . . . . . . . . . . . . . 23 ((3 ∈ ℝ ∧ 5 ∈ ℝ+) → ((3 mod 5) = 0 ↔ (-3 mod 5) = 0))
106104, 63, 105mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 ((3 mod 5) = 0 ↔ (-3 mod 5) = 0)
107 0re 11109 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ ℝ
108 3pos 12225 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 3
109107, 104, 108ltleii 11231 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 3
110 3lt5 12293 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 < 5
111 modid 13795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((3 ∈ ℝ ∧ 5 ∈ ℝ+) ∧ (0 ≤ 3 ∧ 3 < 5)) → (3 mod 5) = 3)
112104, 63, 109, 110, 111mp4an 693 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 mod 5) = 3
113112eqeq1i 2736 . . . . . . . . . . . . . . . . . . . . . . 23 ((3 mod 5) = 0 ↔ 3 = 0)
114 3ne0 12226 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ≠ 0
115 eqneqall 2939 . . . . . . . . . . . . . . . . . . . . . . . 24 (3 = 0 → (3 ≠ 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
116114, 115mpi 20 . . . . . . . . . . . . . . . . . . . . . . 23 (3 = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)
117113, 116sylbi 217 . . . . . . . . . . . . . . . . . . . . . 22 ((3 mod 5) = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)
118106, 117sylbir 235 . . . . . . . . . . . . . . . . . . . . 21 ((-3 mod 5) = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)
119103, 118biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → ((((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
12093, 119sylbid 240 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^5) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
121120ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
12289, 121sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
123122ex 412 . . . . . . . . . . . . . . . 16 (𝑏 = ((𝑦 − 1) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
12487, 123simplbiim 504 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
12586, 124sylbi 217 . . . . . . . . . . . . . 14 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
12676, 82, 1253jaoi 1430 . . . . . . . . . . . . 13 ((⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
127126com13 88 . . . . . . . . . . . 12 (𝑏 = ((𝑦 + 2) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ((⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
128127impd 410 . . . . . . . . . . 11 (𝑏 = ((𝑦 + 2) mod 5) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
12931, 128sylbi 217 . . . . . . . . . 10 (((𝑦 + 2) mod 5) = (2nd ‘⟨0, 𝑏⟩) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
13027, 129simplbiim 504 . . . . . . . . 9 (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
13119, 20opth 5411 . . . . . . . . . 10 (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩ ↔ (1 = 0 ∧ ((𝑦 + 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)))
13224adantr 480 . . . . . . . . . 10 ((1 = 0 ∧ ((𝑦 + 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
133131, 132sylbi 217 . . . . . . . . 9 (⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩ → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
13426, 130, 1333jaoi 1430 . . . . . . . 8 ((⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ∨ ⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ∨ ⟨1, ((𝑦 + 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
13518, 134syl 17 . . . . . . 7 ({⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
136 ax-1 6 . . . . . . 7 (¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
137135, 136pm2.61i 182 . . . . . 6 (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)
138137ex 412 . . . . 5 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ((⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
13914, 138syld 47 . . . 4 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
140139adantl 481 . . 3 (((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
141 preq1 4681 . . . . . . 7 (𝐾 = ⟨0, 𝑦⟩ → {𝐾, ⟨0, 𝑏⟩} = {⟨0, 𝑦⟩, ⟨0, 𝑏⟩})
142141eleq1d 2816 . . . . . 6 (𝐾 = ⟨0, 𝑦⟩ → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
143142adantl 481 . . . . 5 ((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
144 preq2 4682 . . . . . . . 8 (𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ → {⟨0, 𝑏⟩, 𝐿} = {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩})
145144eleq1d 2816 . . . . . . 7 (𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
146145notbid 318 . . . . . 6 (𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ → (¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
147146adantr 480 . . . . 5 ((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → (¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸))
148143, 147imbi12d 344 . . . 4 ((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
149148adantr 480 . . 3 (((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 + 2) mod 5)⟩} ∈ 𝐸)))
150140, 149mpbird 257 . 2 (((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸))
151150imp 406 1 ((((𝐿 = ⟨1, ((𝑦 + 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {cpr 4573  cop 4577   class class class wbr 5086  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   < clt 11141  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  3c3 12176  5c5 12178  cz 12463  cuz 12727  +crp 12885  ..^cfzo 13549  cceil 13690   mod cmo 13768  Vtxcvtx 28969  Edgcedg 29020   NeighbVtx cnbgr 29305   gPetersenGr cgpg 48071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-fl 13691  df-ceil 13692  df-mod 13769  df-hash 14233  df-dvds 16159  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-edgf 28962  df-vtx 28971  df-iedg 28972  df-edg 29021  df-umgr 29056  df-usgr 29124  df-gpg 48072
This theorem is referenced by:  pgnbgreunbgrlem2  48148
  Copyright terms: Public domain W3C validator