Proof of Theorem pgnbgreunbgrlem2lem1
| Step | Hyp | Ref
| Expression |
| 1 | | 5eluz3 12848 |
. . . . . . . 8
⊢ 5 ∈
(ℤ≥‘3) |
| 2 | | pglem 48072 |
. . . . . . . 8
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 3 | 1, 2 | pm3.2i 470 |
. . . . . . 7
⊢ (5 ∈
(ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) |
| 4 | | c0ex 11174 |
. . . . . . . 8
⊢ 0 ∈
V |
| 5 | | vex 3454 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 6 | 4, 5 | op1st 7978 |
. . . . . . 7
⊢
(1st ‘〈0, 𝑦〉) = 0 |
| 7 | | simpr 484 |
. . . . . . 7
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {〈0,
𝑦〉, 〈0, 𝑏〉} ∈ 𝐸) → {〈0, 𝑦〉, 〈0, 𝑏〉} ∈ 𝐸) |
| 8 | | eqid 2730 |
. . . . . . . 8
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 9 | | pgnbgreunbgr.g |
. . . . . . . 8
⊢ 𝐺 = (5 gPetersenGr
2) |
| 10 | | pgnbgreunbgr.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | | pgnbgreunbgr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 12 | 8, 9, 10, 11 | gpgvtxedg0 48044 |
. . . . . . 7
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (1st ‘〈0, 𝑦〉) = 0 ∧ {〈0, 𝑦〉, 〈0, 𝑏〉} ∈ 𝐸) → (〈0, 𝑏〉 = 〈0, (((2nd
‘〈0, 𝑦〉) +
1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1, (2nd
‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod
5)〉)) |
| 13 | 3, 6, 7, 12 | mp3an12i 1467 |
. . . . . 6
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {〈0,
𝑦〉, 〈0, 𝑏〉} ∈ 𝐸) → (〈0, 𝑏〉 = 〈0, (((2nd
‘〈0, 𝑦〉) +
1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1, (2nd
‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod
5)〉)) |
| 14 | 13 | ex 412 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈0, 𝑦〉,
〈0, 𝑏〉} ∈
𝐸 → (〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod
5)〉))) |
| 15 | | vex 3454 |
. . . . . . . . . 10
⊢ 𝑏 ∈ V |
| 16 | 4, 15 | op1st 7978 |
. . . . . . . . 9
⊢
(1st ‘〈0, 𝑏〉) = 0 |
| 17 | 8, 9, 10, 11 | gpgvtxedg0 48044 |
. . . . . . . . 9
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (1st ‘〈0, 𝑏〉) = 0 ∧ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) → (〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) − 1) mod
5)〉)) |
| 18 | 3, 16, 17 | mp3an12 1453 |
. . . . . . . 8
⊢
({〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸 →
(〈1, ((𝑦 + 2) mod
5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) − 1) mod
5)〉)) |
| 19 | | 1ex 11176 |
. . . . . . . . . . 11
⊢ 1 ∈
V |
| 20 | | ovex 7422 |
. . . . . . . . . . 11
⊢ ((𝑦 + 2) mod 5) ∈
V |
| 21 | 19, 20 | opth 5438 |
. . . . . . . . . 10
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ↔ (1 = 0 ∧
((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) + 1) mod 5))) |
| 22 | | ax-1ne0 11143 |
. . . . . . . . . . . 12
⊢ 1 ≠
0 |
| 23 | | eqneqall 2937 |
. . . . . . . . . . . 12
⊢ (1 = 0
→ (1 ≠ 0 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸))) |
| 24 | 22, 23 | mpi 20 |
. . . . . . . . . . 11
⊢ (1 = 0
→ (((𝑏 ∈ (0..^5)
∧ 𝑦 ∈ (0..^5))
∧ (〈0, 𝑏〉 =
〈0, (((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((1 = 0
∧ ((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) + 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 26 | 21, 25 | sylbi 217 |
. . . . . . . . 9
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 27 | 19, 20 | opth 5438 |
. . . . . . . . . 10
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ↔ (1 = 1 ∧ ((𝑦 + 2) mod 5) = (2nd
‘〈0, 𝑏〉))) |
| 28 | 4, 15 | op2nd 7979 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈0, 𝑏〉) = 𝑏 |
| 29 | 28 | eqeq2i 2743 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 2) mod 5) = (2nd
‘〈0, 𝑏〉)
↔ ((𝑦 + 2) mod 5) =
𝑏) |
| 30 | | eqcom 2737 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 2) mod 5) = 𝑏 ↔ 𝑏 = ((𝑦 + 2) mod 5)) |
| 31 | 29, 30 | bitri 275 |
. . . . . . . . . . 11
⊢ (((𝑦 + 2) mod 5) = (2nd
‘〈0, 𝑏〉)
↔ 𝑏 = ((𝑦 + 2) mod 5)) |
| 32 | 4, 5 | op2nd 7979 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘〈0, 𝑦〉) = 𝑦 |
| 33 | 32 | oveq1i 7399 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘〈0, 𝑦〉) + 1) = (𝑦 + 1) |
| 34 | 33 | oveq1i 7399 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘〈0, 𝑦〉) + 1) mod 5) = ((𝑦 + 1) mod 5) |
| 35 | 34 | opeq2i 4843 |
. . . . . . . . . . . . . . . . 17
⊢ 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 = 〈0, ((𝑦 + 1) mod
5)〉 |
| 36 | 35 | eqeq2i 2743 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ↔ 〈0,
𝑏〉 = 〈0, ((𝑦 + 1) mod
5)〉) |
| 37 | 4, 15 | opth 5438 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
𝑏〉 = 〈0, ((𝑦 + 1) mod 5)〉 ↔ (0 = 0
∧ 𝑏 = ((𝑦 + 1) mod 5))) |
| 38 | 36, 37 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ↔ (0 = 0 ∧
𝑏 = ((𝑦 + 1) mod 5))) |
| 39 | | eqeq1 2734 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = ((𝑦 + 1) mod 5) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5))) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5))) |
| 41 | | eqcom 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5)) |
| 42 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5))) |
| 43 | | elfzoelz 13626 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0..^5) → 𝑦 ∈
ℤ) |
| 44 | | 2z 12571 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℤ |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0..^5) → 2 ∈
ℤ) |
| 46 | 43, 45 | zaddcld 12648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0..^5) → (𝑦 + 2) ∈
ℤ) |
| 47 | | 1zzd 12570 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0..^5) → 1 ∈
ℤ) |
| 48 | 43, 47 | zaddcld 12648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0..^5) → (𝑦 + 1) ∈
ℤ) |
| 49 | | 5nn 12273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 5 ∈
ℕ |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0..^5) → 5 ∈
ℕ) |
| 51 | | difmod0 16263 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 + 2) ∈ ℤ ∧
(𝑦 + 1) ∈ ℤ
∧ 5 ∈ ℕ) → ((((𝑦 + 2) − (𝑦 + 1)) mod 5) = 0 ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5))) |
| 52 | 46, 48, 50, 51 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0..^5) → ((((𝑦 + 2) − (𝑦 + 1)) mod 5) = 0 ↔ ((𝑦 + 2) mod 5) = ((𝑦 + 1) mod 5))) |
| 53 | 43 | zcnd 12645 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → 𝑦 ∈
ℂ) |
| 54 | | 2cnd 12265 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → 2 ∈
ℂ) |
| 55 | | 1cnd 11175 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → 1 ∈
ℂ) |
| 56 | 53, 54, 55 | pnpcand 11576 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0..^5) → ((𝑦 + 2) − (𝑦 + 1)) = (2 −
1)) |
| 57 | | 2m1e1 12313 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2
− 1) = 1 |
| 58 | 56, 57 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0..^5) → ((𝑦 + 2) − (𝑦 + 1)) = 1) |
| 59 | 58 | oveq1d 7404 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0..^5) → (((𝑦 + 2) − (𝑦 + 1)) mod 5) = (1 mod
5)) |
| 60 | 59 | eqeq1d 2732 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0..^5) → ((((𝑦 + 2) − (𝑦 + 1)) mod 5) = 0 ↔ (1 mod
5) = 0)) |
| 61 | 42, 52, 60 | 3bitr2d 307 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) ↔ (1 mod 5) =
0)) |
| 62 | | 1re 11180 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ |
| 63 | | 5rp 12964 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 5 ∈
ℝ+ |
| 64 | | 0le1 11707 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ≤
1 |
| 65 | | 1lt5 12367 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 <
5 |
| 66 | | modid 13864 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((1
∈ ℝ ∧ 5 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 <
5)) → (1 mod 5) = 1) |
| 67 | 62, 63, 64, 65, 66 | mp4an 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 mod 5)
= 1 |
| 68 | 67 | eqeq1i 2735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1 mod
5) = 0 ↔ 1 = 0) |
| 69 | | eqneqall 2937 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 = 0
→ (1 ≠ 0 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 70 | 22, 69 | mpi 20 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 = 0
→ ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) |
| 71 | 68, 70 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1 mod
5) = 0 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) |
| 72 | 61, 71 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 73 | 72 | ad2antll 729 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (((𝑦 + 1) mod 5) = ((𝑦 + 2) mod 5) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 74 | 40, 73 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 75 | 74 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = ((𝑦 + 1) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 76 | 38, 75 | simplbiim 504 |
. . . . . . . . . . . . . 14
⊢ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 77 | 4, 15 | opth 5438 |
. . . . . . . . . . . . . . 15
⊢ (〈0,
𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ↔ (0 = 1 ∧ 𝑏 = (2nd
‘〈0, 𝑦〉))) |
| 78 | | 0ne1 12258 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
1 |
| 79 | | eqneqall 2937 |
. . . . . . . . . . . . . . . . 17
⊢ (0 = 1
→ (0 ≠ 1 → ((𝑏
∈ (0..^5) ∧ 𝑦
∈ (0..^5)) → (𝑏 =
((𝑦 + 2) mod 5) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)))) |
| 80 | 78, 79 | mpi 20 |
. . . . . . . . . . . . . . . 16
⊢ (0 = 1
→ ((𝑏 ∈ (0..^5)
∧ 𝑦 ∈ (0..^5))
→ (𝑏 = ((𝑦 + 2) mod 5) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸))) |
| 81 | 80 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((0 = 1
∧ 𝑏 = (2nd
‘〈0, 𝑦〉))
→ ((𝑏 ∈ (0..^5)
∧ 𝑦 ∈ (0..^5))
→ (𝑏 = ((𝑦 + 2) mod 5) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸))) |
| 82 | 77, 81 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (〈0,
𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 83 | 32 | oveq1i 7399 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘〈0, 𝑦〉) − 1) = (𝑦 − 1) |
| 84 | 83 | oveq1i 7399 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘〈0, 𝑦〉) − 1) mod 5) = ((𝑦 − 1) mod
5) |
| 85 | 84 | opeq2i 4843 |
. . . . . . . . . . . . . . . 16
⊢ 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉 = 〈0,
((𝑦 − 1) mod
5)〉 |
| 86 | 85 | eqeq2i 2743 |
. . . . . . . . . . . . . . 15
⊢ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉 ↔
〈0, 𝑏〉 = 〈0,
((𝑦 − 1) mod
5)〉) |
| 87 | 4, 15 | opth 5438 |
. . . . . . . . . . . . . . . 16
⊢ (〈0,
𝑏〉 = 〈0, ((𝑦 − 1) mod 5)〉 ↔
(0 = 0 ∧ 𝑏 = ((𝑦 − 1) mod
5))) |
| 88 | | eqeq1 2734 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = ((𝑦 − 1) mod 5) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5))) |
| 89 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) ↔ ((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5))) |
| 90 | 43, 47 | zsubcld 12649 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0..^5) → (𝑦 − 1) ∈
ℤ) |
| 91 | | difmod0 16263 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 − 1) ∈ ℤ ∧
(𝑦 + 2) ∈ ℤ
∧ 5 ∈ ℕ) → ((((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0 ↔ ((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5))) |
| 92 | 91 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 − 1) ∈ ℤ ∧
(𝑦 + 2) ∈ ℤ
∧ 5 ∈ ℕ) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) ↔ (((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0)) |
| 93 | 90, 46, 50, 92 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0..^5) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) ↔ (((𝑦 − 1) − (𝑦 + 2)) mod 5) =
0)) |
| 94 | 53, 55, 53, 54 | subsubadd23 11591 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → ((𝑦 − 1) − (𝑦 + 2)) = ((𝑦 − 𝑦) − (1 + 2))) |
| 95 | 53 | subidd 11527 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0..^5) → (𝑦 − 𝑦) = 0) |
| 96 | | 1p2e3 12330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (1 + 2) =
3 |
| 97 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0..^5) → (1 + 2) =
3) |
| 98 | 95, 97 | oveq12d 7407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (0..^5) → ((𝑦 − 𝑦) − (1 + 2)) = (0 −
3)) |
| 99 | | df-neg 11414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ -3 = (0
− 3) |
| 100 | 98, 99 | eqtr4di 2783 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → ((𝑦 − 𝑦) − (1 + 2)) = -3) |
| 101 | 94, 100 | eqtrd 2765 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0..^5) → ((𝑦 − 1) − (𝑦 + 2)) = -3) |
| 102 | 101 | oveq1d 7404 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0..^5) → (((𝑦 − 1) − (𝑦 + 2)) mod 5) = (-3 mod
5)) |
| 103 | 102 | eqeq1d 2732 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0..^5) → ((((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0 ↔ (-3 mod
5) = 0)) |
| 104 | | 3re 12267 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 3 ∈
ℝ |
| 105 | | negmod0 13846 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((3
∈ ℝ ∧ 5 ∈ ℝ+) → ((3 mod 5) = 0 ↔
(-3 mod 5) = 0)) |
| 106 | 104, 63, 105 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((3 mod
5) = 0 ↔ (-3 mod 5) = 0) |
| 107 | | 0re 11182 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 ∈
ℝ |
| 108 | | 3pos 12292 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 <
3 |
| 109 | 107, 104,
108 | ltleii 11303 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ≤
3 |
| 110 | | 3lt5 12365 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 3 <
5 |
| 111 | | modid 13864 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((3
∈ ℝ ∧ 5 ∈ ℝ+) ∧ (0 ≤ 3 ∧ 3 <
5)) → (3 mod 5) = 3) |
| 112 | 104, 63, 109, 110, 111 | mp4an 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (3 mod 5)
= 3 |
| 113 | 112 | eqeq1i 2735 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((3 mod
5) = 0 ↔ 3 = 0) |
| 114 | | 3ne0 12293 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 3 ≠
0 |
| 115 | | eqneqall 2937 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (3 = 0
→ (3 ≠ 0 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 116 | 114, 115 | mpi 20 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (3 = 0
→ ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) |
| 117 | 113, 116 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((3 mod
5) = 0 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) |
| 118 | 106, 117 | sylbir 235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((-3 mod
5) = 0 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) |
| 119 | 103, 118 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0..^5) → ((((𝑦 − 1) − (𝑦 + 2)) mod 5) = 0 → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 120 | 93, 119 | sylbid 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0..^5) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 121 | 120 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (((𝑦 − 1) mod 5) = ((𝑦 + 2) mod 5) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 122 | 89, 121 | sylbid 240 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 123 | 122 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = ((𝑦 − 1) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 124 | 87, 123 | simplbiim 504 |
. . . . . . . . . . . . . . 15
⊢ (〈0,
𝑏〉 = 〈0, ((𝑦 − 1) mod 5)〉 →
((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) →
(𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 125 | 86, 124 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉 →
((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) →
(𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 126 | 76, 82, 125 | 3jaoi 1430 |
. . . . . . . . . . . . 13
⊢
((〈0, 𝑏〉 =
〈0, (((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉) →
((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) →
(𝑏 = ((𝑦 + 2) mod 5) → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 127 | 126 | com13 88 |
. . . . . . . . . . . 12
⊢ (𝑏 = ((𝑦 + 2) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ((〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸))) |
| 128 | 127 | impd 410 |
. . . . . . . . . . 11
⊢ (𝑏 = ((𝑦 + 2) mod 5) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 129 | 31, 128 | sylbi 217 |
. . . . . . . . . 10
⊢ (((𝑦 + 2) mod 5) = (2nd
‘〈0, 𝑏〉)
→ (((𝑏 ∈ (0..^5)
∧ 𝑦 ∈ (0..^5))
∧ (〈0, 𝑏〉 =
〈0, (((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 130 | 27, 129 | simplbiim 504 |
. . . . . . . . 9
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 131 | 19, 20 | opth 5438 |
. . . . . . . . . 10
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉 ↔ (1 = 0
∧ ((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) − 1) mod 5))) |
| 132 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((1 = 0
∧ ((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) − 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 133 | 131, 132 | sylbi 217 |
. . . . . . . . 9
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉 →
(((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) ∧
(〈0, 𝑏〉 =
〈0, (((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 134 | 26, 130, 133 | 3jaoi 1430 |
. . . . . . . 8
⊢
((〈1, ((𝑦 + 2)
mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉) →
(((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) ∧
(〈0, 𝑏〉 =
〈0, (((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 135 | 18, 134 | syl 17 |
. . . . . . 7
⊢
({〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸 →
(((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) ∧
(〈0, 𝑏〉 =
〈0, (((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 136 | | ax-1 6 |
. . . . . . 7
⊢ (¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 137 | 135, 136 | pm2.61i 182 |
. . . . . 6
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈0,
𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸) |
| 138 | 137 | ex 412 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
((〈0, 𝑏〉 =
〈0, (((2nd ‘〈0, 𝑦〉) + 1) mod 5)〉 ∨ 〈0, 𝑏〉 = 〈1,
(2nd ‘〈0, 𝑦〉)〉 ∨ 〈0, 𝑏〉 = 〈0,
(((2nd ‘〈0, 𝑦〉) − 1) mod 5)〉) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 139 | 14, 138 | syld 47 |
. . . 4
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈0, 𝑦〉,
〈0, 𝑏〉} ∈
𝐸 → ¬ {〈0,
𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 140 | 139 | adantl 481 |
. . 3
⊢ (((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({〈0, 𝑦〉, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 141 | | preq1 4699 |
. . . . . . 7
⊢ (𝐾 = 〈0, 𝑦〉 → {𝐾, 〈0, 𝑏〉} = {〈0, 𝑦〉, 〈0, 𝑏〉}) |
| 142 | 141 | eleq1d 2814 |
. . . . . 6
⊢ (𝐾 = 〈0, 𝑦〉 → ({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ↔ {〈0, 𝑦〉, 〈0, 𝑏〉} ∈ 𝐸)) |
| 143 | 142 | adantl 481 |
. . . . 5
⊢ ((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) → ({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ↔ {〈0, 𝑦〉, 〈0, 𝑏〉} ∈ 𝐸)) |
| 144 | | preq2 4700 |
. . . . . . . 8
⊢ (𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 → {〈0, 𝑏〉, 𝐿} = {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉}) |
| 145 | 144 | eleq1d 2814 |
. . . . . . 7
⊢ (𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 → ({〈0, 𝑏〉, 𝐿} ∈ 𝐸 ↔ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 146 | 145 | notbid 318 |
. . . . . 6
⊢ (𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 → (¬ {〈0,
𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 147 | 146 | adantr 480 |
. . . . 5
⊢ ((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) → (¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 148 | 143, 147 | imbi12d 344 |
. . . 4
⊢ ((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈0, 𝑦〉, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 149 | 148 | adantr 480 |
. . 3
⊢ (((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈0, 𝑦〉, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 150 | 140, 149 | mpbird 257 |
. 2
⊢ (((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐾, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸)) |
| 151 | 150 | imp 406 |
1
⊢ ((((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈0, 𝑦〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈0, 𝑏〉} ∈ 𝐸) → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) |