Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem2lem2 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem2lem2 48095
Description: Lemma 2 for pgnbgreunbgrlem2 48097. (Contributed by AV, 16-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem2lem2 ((((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)
Distinct variable group:   𝑦,𝑏
Allowed substitution hints:   𝐸(𝑦,𝑏)   𝐺(𝑦,𝑏)   𝐾(𝑦,𝑏)   𝐿(𝑦,𝑏)   𝑁(𝑦,𝑏)   𝑉(𝑦,𝑏)   𝑋(𝑦,𝑏)

Proof of Theorem pgnbgreunbgrlem2lem2
StepHypRef Expression
1 5eluz3 12848 . . . . . . . 8 5 ∈ (ℤ‘3)
2 pglem 48072 . . . . . . . 8 2 ∈ (1..^(⌈‘(5 / 2)))
31, 2pm3.2i 470 . . . . . . 7 (5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2))))
4 c0ex 11174 . . . . . . . 8 0 ∈ V
5 vex 3454 . . . . . . . 8 𝑦 ∈ V
64, 5op1st 7978 . . . . . . 7 (1st ‘⟨0, 𝑦⟩) = 0
7 simpr 484 . . . . . . 7 (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸) → {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸)
8 eqid 2730 . . . . . . . 8 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
9 pgnbgreunbgr.g . . . . . . . 8 𝐺 = (5 gPetersenGr 2)
10 pgnbgreunbgr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
11 pgnbgreunbgr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
128, 9, 10, 11gpgvtxedg0 48044 . . . . . . 7 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (1st ‘⟨0, 𝑦⟩) = 0 ∧ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸) → (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩))
133, 6, 7, 12mp3an12i 1467 . . . . . 6 (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸) → (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩))
1413ex 412 . . . . 5 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)))
15 vex 3454 . . . . . . . . . 10 𝑏 ∈ V
164, 15op1st 7978 . . . . . . . . 9 (1st ‘⟨0, 𝑏⟩) = 0
178, 9, 10, 11gpgvtxedg0 48044 . . . . . . . . 9 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (1st ‘⟨0, 𝑏⟩) = 0 ∧ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸) → (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ∨ ⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ∨ ⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩))
183, 16, 17mp3an12 1453 . . . . . . . 8 ({⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸 → (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ∨ ⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ∨ ⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩))
19 1ex 11176 . . . . . . . . . . 11 1 ∈ V
20 ovex 7422 . . . . . . . . . . 11 ((𝑦 − 2) mod 5) ∈ V
2119, 20opth 5438 . . . . . . . . . 10 (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ↔ (1 = 0 ∧ ((𝑦 − 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)))
22 ax-1ne0 11143 . . . . . . . . . . . 12 1 ≠ 0
23 eqneqall 2937 . . . . . . . . . . . 12 (1 = 0 → (1 ≠ 0 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
2422, 23mpi 20 . . . . . . . . . . 11 (1 = 0 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
2524adantr 480 . . . . . . . . . 10 ((1 = 0 ∧ ((𝑦 − 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
2621, 25sylbi 217 . . . . . . . . 9 (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
2719, 20opth 5438 . . . . . . . . . 10 (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ↔ (1 = 1 ∧ ((𝑦 − 2) mod 5) = (2nd ‘⟨0, 𝑏⟩)))
284, 15op2nd 7979 . . . . . . . . . . . . 13 (2nd ‘⟨0, 𝑏⟩) = 𝑏
2928eqeq2i 2743 . . . . . . . . . . . 12 (((𝑦 − 2) mod 5) = (2nd ‘⟨0, 𝑏⟩) ↔ ((𝑦 − 2) mod 5) = 𝑏)
30 eqcom 2737 . . . . . . . . . . . 12 (((𝑦 − 2) mod 5) = 𝑏𝑏 = ((𝑦 − 2) mod 5))
3129, 30bitri 275 . . . . . . . . . . 11 (((𝑦 − 2) mod 5) = (2nd ‘⟨0, 𝑏⟩) ↔ 𝑏 = ((𝑦 − 2) mod 5))
324, 5op2nd 7979 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘⟨0, 𝑦⟩) = 𝑦
3332oveq1i 7399 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘⟨0, 𝑦⟩) + 1) = (𝑦 + 1)
3433oveq1i 7399 . . . . . . . . . . . . . . . . . 18 (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5) = ((𝑦 + 1) mod 5)
3534opeq2i 4843 . . . . . . . . . . . . . . . . 17 ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩
3635eqeq2i 2743 . . . . . . . . . . . . . . . 16 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ↔ ⟨0, 𝑏⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩)
374, 15opth 5438 . . . . . . . . . . . . . . . 16 (⟨0, 𝑏⟩ = ⟨0, ((𝑦 + 1) mod 5)⟩ ↔ (0 = 0 ∧ 𝑏 = ((𝑦 + 1) mod 5)))
3836, 37bitri 275 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ↔ (0 = 0 ∧ 𝑏 = ((𝑦 + 1) mod 5)))
39 eqeq1 2734 . . . . . . . . . . . . . . . . . 18 (𝑏 = ((𝑦 + 1) mod 5) → (𝑏 = ((𝑦 − 2) mod 5) ↔ ((𝑦 + 1) mod 5) = ((𝑦 − 2) mod 5)))
4039adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 − 2) mod 5) ↔ ((𝑦 + 1) mod 5) = ((𝑦 − 2) mod 5)))
41 eqcom 2737 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 1) mod 5) = ((𝑦 − 2) mod 5) ↔ ((𝑦 − 2) mod 5) = ((𝑦 + 1) mod 5))
4241a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 − 2) mod 5) ↔ ((𝑦 − 2) mod 5) = ((𝑦 + 1) mod 5)))
43 elfzoelz 13626 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → 𝑦 ∈ ℤ)
44 2z 12571 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℤ
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → 2 ∈ ℤ)
4643, 45zsubcld 12649 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (𝑦 − 2) ∈ ℤ)
4743peano2zd 12647 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (𝑦 + 1) ∈ ℤ)
48 5nn 12273 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℕ
4948a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → 5 ∈ ℕ)
50 difmod0 16263 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 2) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ ∧ 5 ∈ ℕ) → ((((𝑦 − 2) − (𝑦 + 1)) mod 5) = 0 ↔ ((𝑦 − 2) mod 5) = ((𝑦 + 1) mod 5)))
5146, 47, 49, 50syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → ((((𝑦 − 2) − (𝑦 + 1)) mod 5) = 0 ↔ ((𝑦 − 2) mod 5) = ((𝑦 + 1) mod 5)))
5243zcnd 12645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → 𝑦 ∈ ℂ)
53 2cnd 12265 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → 2 ∈ ℂ)
54 1cnd 11175 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → 1 ∈ ℂ)
5552, 53, 52, 54subsubadd23 11591 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^5) → ((𝑦 − 2) − (𝑦 + 1)) = ((𝑦𝑦) − (2 + 1)))
5652subidd 11527 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0..^5) → (𝑦𝑦) = 0)
57 2p1e3 12329 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (2 + 1) = 3
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0..^5) → (2 + 1) = 3)
5956, 58oveq12d 7407 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → ((𝑦𝑦) − (2 + 1)) = (0 − 3))
60 df-neg 11414 . . . . . . . . . . . . . . . . . . . . . . . 24 -3 = (0 − 3)
6159, 60eqtr4di 2783 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^5) → ((𝑦𝑦) − (2 + 1)) = -3)
6255, 61eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → ((𝑦 − 2) − (𝑦 + 1)) = -3)
6362oveq1d 7404 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (((𝑦 − 2) − (𝑦 + 1)) mod 5) = (-3 mod 5))
6463eqeq1d 2732 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → ((((𝑦 − 2) − (𝑦 + 1)) mod 5) = 0 ↔ (-3 mod 5) = 0))
6542, 51, 643bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 − 2) mod 5) ↔ (-3 mod 5) = 0))
66 3re 12267 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℝ
67 5rp 12964 . . . . . . . . . . . . . . . . . . . . . 22 5 ∈ ℝ+
68 negmod0 13846 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℝ ∧ 5 ∈ ℝ+) → ((3 mod 5) = 0 ↔ (-3 mod 5) = 0))
6966, 67, 68mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 ((3 mod 5) = 0 ↔ (-3 mod 5) = 0)
70 0re 11182 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
71 3pos 12292 . . . . . . . . . . . . . . . . . . . . . . . 24 0 < 3
7270, 66, 71ltleii 11303 . . . . . . . . . . . . . . . . . . . . . . 23 0 ≤ 3
73 3lt5 12365 . . . . . . . . . . . . . . . . . . . . . . 23 3 < 5
74 modid 13864 . . . . . . . . . . . . . . . . . . . . . . 23 (((3 ∈ ℝ ∧ 5 ∈ ℝ+) ∧ (0 ≤ 3 ∧ 3 < 5)) → (3 mod 5) = 3)
7566, 67, 72, 73, 74mp4an 693 . . . . . . . . . . . . . . . . . . . . . 22 (3 mod 5) = 3
7675eqeq1i 2735 . . . . . . . . . . . . . . . . . . . . 21 ((3 mod 5) = 0 ↔ 3 = 0)
7769, 76bitr3i 277 . . . . . . . . . . . . . . . . . . . 20 ((-3 mod 5) = 0 ↔ 3 = 0)
78 3ne0 12293 . . . . . . . . . . . . . . . . . . . . 21 3 ≠ 0
79 eqneqall 2937 . . . . . . . . . . . . . . . . . . . . 21 (3 = 0 → (3 ≠ 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
8078, 79mpi 20 . . . . . . . . . . . . . . . . . . . 20 (3 = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)
8177, 80sylbi 217 . . . . . . . . . . . . . . . . . . 19 ((-3 mod 5) = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)
8265, 81biimtrdi 253 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0..^5) → (((𝑦 + 1) mod 5) = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
8382ad2antll 729 . . . . . . . . . . . . . . . . 17 ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (((𝑦 + 1) mod 5) = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
8440, 83sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑏 = ((𝑦 + 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
8584ex 412 . . . . . . . . . . . . . . 15 (𝑏 = ((𝑦 + 1) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
8638, 85simplbiim 504 . . . . . . . . . . . . . 14 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
874, 15opth 5438 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ↔ (0 = 1 ∧ 𝑏 = (2nd ‘⟨0, 𝑦⟩)))
88 0ne1 12258 . . . . . . . . . . . . . . . . 17 0 ≠ 1
89 eqneqall 2937 . . . . . . . . . . . . . . . . 17 (0 = 1 → (0 ≠ 1 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))))
9088, 89mpi 20 . . . . . . . . . . . . . . . 16 (0 = 1 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
9190adantr 480 . . . . . . . . . . . . . . 15 ((0 = 1 ∧ 𝑏 = (2nd ‘⟨0, 𝑦⟩)) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
9287, 91sylbi 217 . . . . . . . . . . . . . 14 (⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
9332oveq1i 7399 . . . . . . . . . . . . . . . . . 18 ((2nd ‘⟨0, 𝑦⟩) − 1) = (𝑦 − 1)
9493oveq1i 7399 . . . . . . . . . . . . . . . . 17 (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5) = ((𝑦 − 1) mod 5)
9594opeq2i 4843 . . . . . . . . . . . . . . . 16 ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩
9695eqeq2i 2743 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩ ↔ ⟨0, 𝑏⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩)
974, 15opth 5438 . . . . . . . . . . . . . . . 16 (⟨0, 𝑏⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩ ↔ (0 = 0 ∧ 𝑏 = ((𝑦 − 1) mod 5)))
98 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 (𝑏 = ((𝑦 − 1) mod 5) → (𝑏 = ((𝑦 − 2) mod 5) ↔ ((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5)))
9998adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 − 2) mod 5) ↔ ((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5)))
100 1zzd 12570 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → 1 ∈ ℤ)
10143, 100zsubcld 12649 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → (𝑦 − 1) ∈ ℤ)
102 difmod0 16263 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 − 1) ∈ ℤ ∧ (𝑦 − 2) ∈ ℤ ∧ 5 ∈ ℕ) → ((((𝑦 − 1) − (𝑦 − 2)) mod 5) = 0 ↔ ((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5)))
103102bicomd 223 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 − 1) ∈ ℤ ∧ (𝑦 − 2) ∈ ℤ ∧ 5 ∈ ℕ) → (((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5) ↔ (((𝑦 − 1) − (𝑦 − 2)) mod 5) = 0))
104101, 46, 49, 103syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → (((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5) ↔ (((𝑦 − 1) − (𝑦 − 2)) mod 5) = 0))
10552, 54, 53nnncan1d 11573 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (0..^5) → ((𝑦 − 1) − (𝑦 − 2)) = (2 − 1))
106 2m1e1 12313 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 − 1) = 1
107105, 106eqtrdi 2781 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^5) → ((𝑦 − 1) − (𝑦 − 2)) = 1)
108107oveq1d 7404 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (0..^5) → (((𝑦 − 1) − (𝑦 − 2)) mod 5) = (1 mod 5))
109108eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (0..^5) → ((((𝑦 − 1) − (𝑦 − 2)) mod 5) = 0 ↔ (1 mod 5) = 0))
110 1re 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
111 0le1 11707 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ≤ 1
112 1lt5 12367 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 5
113 modid 13864 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 ∈ ℝ ∧ 5 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 5)) → (1 mod 5) = 1)
114110, 67, 111, 112, 113mp4an 693 . . . . . . . . . . . . . . . . . . . . . . 23 (1 mod 5) = 1
115114eqeq1i 2735 . . . . . . . . . . . . . . . . . . . . . 22 ((1 mod 5) = 0 ↔ 1 = 0)
116 eqneqall 2937 . . . . . . . . . . . . . . . . . . . . . . 23 (1 = 0 → (1 ≠ 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
11722, 116mpi 20 . . . . . . . . . . . . . . . . . . . . . 22 (1 = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)
118115, 117sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 ((1 mod 5) = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)
119109, 118biimtrdi 253 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (0..^5) → ((((𝑦 − 1) − (𝑦 − 2)) mod 5) = 0 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
120104, 119sylbid 240 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (0..^5) → (((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
121120ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (((𝑦 − 1) mod 5) = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
12299, 121sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑏 = ((𝑦 − 1) mod 5) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
123122ex 412 . . . . . . . . . . . . . . . 16 (𝑏 = ((𝑦 − 1) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
12497, 123simplbiim 504 . . . . . . . . . . . . . . 15 (⟨0, 𝑏⟩ = ⟨0, ((𝑦 − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
12596, 124sylbi 217 . . . . . . . . . . . . . 14 (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩ → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
12686, 92, 1253jaoi 1430 . . . . . . . . . . . . 13 ((⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑏 = ((𝑦 − 2) mod 5) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
127126com13 88 . . . . . . . . . . . 12 (𝑏 = ((𝑦 − 2) mod 5) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ((⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
128127impd 410 . . . . . . . . . . 11 (𝑏 = ((𝑦 − 2) mod 5) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
12931, 128sylbi 217 . . . . . . . . . 10 (((𝑦 − 2) mod 5) = (2nd ‘⟨0, 𝑏⟩) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
13027, 129simplbiim 504 . . . . . . . . 9 (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
13119, 20opth 5438 . . . . . . . . . 10 (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩ ↔ (1 = 0 ∧ ((𝑦 − 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)))
13224adantr 480 . . . . . . . . . 10 ((1 = 0 ∧ ((𝑦 − 2) mod 5) = (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
133131, 132sylbi 217 . . . . . . . . 9 (⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩ → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
13426, 130, 1333jaoi 1430 . . . . . . . 8 ((⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) + 1) mod 5)⟩ ∨ ⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨1, (2nd ‘⟨0, 𝑏⟩)⟩ ∨ ⟨1, ((𝑦 − 2) mod 5)⟩ = ⟨0, (((2nd ‘⟨0, 𝑏⟩) − 1) mod 5)⟩) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
13518, 134syl 17 . . . . . . 7 ({⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
136 ax-1 6 . . . . . . 7 (¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
137135, 136pm2.61i 182 . . . . . 6 (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩)) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)
138137ex 412 . . . . 5 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ((⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) + 1) mod 5)⟩ ∨ ⟨0, 𝑏⟩ = ⟨1, (2nd ‘⟨0, 𝑦⟩)⟩ ∨ ⟨0, 𝑏⟩ = ⟨0, (((2nd ‘⟨0, 𝑦⟩) − 1) mod 5)⟩) → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
13914, 138syld 47 . . . 4 ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
140139adantl 481 . . 3 (((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
141 preq1 4699 . . . . . . 7 (𝐾 = ⟨0, 𝑦⟩ → {𝐾, ⟨0, 𝑏⟩} = {⟨0, 𝑦⟩, ⟨0, 𝑏⟩})
142141eleq1d 2814 . . . . . 6 (𝐾 = ⟨0, 𝑦⟩ → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
143142adantl 481 . . . . 5 ((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ↔ {⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸))
144 preq2 4700 . . . . . . . 8 (𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ → {⟨0, 𝑏⟩, 𝐿} = {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩})
145144eleq1d 2814 . . . . . . 7 (𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ → ({⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
146145notbid 318 . . . . . 6 (𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ → (¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
147146adantr 480 . . . . 5 ((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → (¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸 ↔ ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸))
148143, 147imbi12d 344 . . . 4 ((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
149148adantr 480 . . 3 (((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) ↔ ({⟨0, 𝑦⟩, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, ⟨1, ((𝑦 − 2) mod 5)⟩} ∈ 𝐸)))
150140, 149mpbird 257 . 2 (((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸))
151150imp 406 1 ((((𝐿 = ⟨1, ((𝑦 − 2) mod 5)⟩ ∧ 𝐾 = ⟨0, 𝑦⟩) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸) → ¬ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {cpr 4593  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   < clt 11214  cle 11215  cmin 11411  -cneg 11412   / cdiv 11841  cn 12187  2c2 12242  3c3 12243  5c5 12245  cz 12535  cuz 12799  +crp 12957  ..^cfzo 13621  cceil 13759   mod cmo 13837  Vtxcvtx 28929  Edgcedg 28980   NeighbVtx cnbgr 29265   gPetersenGr cgpg 48021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-oadd 8440  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-ceil 13761  df-mod 13838  df-hash 14302  df-dvds 16229  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28922  df-vtx 28931  df-iedg 28932  df-edg 28981  df-umgr 29016  df-usgr 29084  df-gpg 48022
This theorem is referenced by:  pgnbgreunbgrlem2  48097
  Copyright terms: Public domain W3C validator