Proof of Theorem pgnbgreunbgrlem2lem3
| Step | Hyp | Ref
| Expression |
| 1 | | prcom 4698 |
. . . . . . . 8
⊢ {〈1,
((𝑦 − 2) mod
5)〉, 〈0, 𝑏〉}
= {〈0, 𝑏〉,
〈1, ((𝑦 − 2) mod
5)〉} |
| 2 | 1 | eleq1i 2820 |
. . . . . . 7
⊢
({〈1, ((𝑦
− 2) mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸 ↔ {〈0, 𝑏〉, 〈1, ((𝑦 − 2) mod 5)〉} ∈ 𝐸) |
| 3 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈1, ((𝑦 − 2)
mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸 ↔ {〈0, 𝑏〉, 〈1, ((𝑦 − 2) mod 5)〉} ∈ 𝐸)) |
| 4 | | 5eluz3 12848 |
. . . . . . . 8
⊢ 5 ∈
(ℤ≥‘3) |
| 5 | | pglem 48072 |
. . . . . . . 8
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 6 | 4, 5 | pm3.2i 470 |
. . . . . . 7
⊢ (5 ∈
(ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) |
| 7 | | c0ex 11174 |
. . . . . . . 8
⊢ 0 ∈
V |
| 8 | | vex 3454 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
| 9 | 7, 8 | op1st 7978 |
. . . . . . 7
⊢
(1st ‘〈0, 𝑏〉) = 0 |
| 10 | | eqid 2730 |
. . . . . . . 8
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 11 | | pgnbgreunbgr.g |
. . . . . . . 8
⊢ 𝐺 = (5 gPetersenGr
2) |
| 12 | | pgnbgreunbgr.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
| 13 | | pgnbgreunbgr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 14 | 10, 11, 12, 13 | gpgvtxedg0 48044 |
. . . . . . 7
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (1st ‘〈0, 𝑏〉) = 0 ∧ {〈0, 𝑏〉, 〈1, ((𝑦 − 2) mod 5)〉} ∈
𝐸) → (〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod
5)〉)) |
| 15 | 6, 9, 14 | mp3an12 1453 |
. . . . . 6
⊢
({〈0, 𝑏〉,
〈1, ((𝑦 − 2) mod
5)〉} ∈ 𝐸 →
(〈1, ((𝑦 − 2)
mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod
5)〉)) |
| 16 | 3, 15 | biimtrdi 253 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈1, ((𝑦 − 2)
mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸 → (〈1, ((𝑦 − 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod
5)〉))) |
| 17 | 10, 11, 12, 13 | gpgvtxedg0 48044 |
. . . . . . . . 9
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (1st ‘〈0, 𝑏〉) = 0 ∧ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) → (〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) − 1) mod
5)〉)) |
| 18 | 6, 9, 17 | mp3an12 1453 |
. . . . . . . 8
⊢
({〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸 →
(〈1, ((𝑦 + 2) mod
5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) − 1) mod
5)〉)) |
| 19 | | 1ex 11176 |
. . . . . . . . . . 11
⊢ 1 ∈
V |
| 20 | | ovex 7422 |
. . . . . . . . . . 11
⊢ ((𝑦 + 2) mod 5) ∈
V |
| 21 | 19, 20 | opth 5438 |
. . . . . . . . . 10
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ↔ (1 = 0 ∧
((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) + 1) mod 5))) |
| 22 | | ax-1ne0 11143 |
. . . . . . . . . . . 12
⊢ 1 ≠
0 |
| 23 | | eqneqall 2937 |
. . . . . . . . . . . 12
⊢ (1 = 0
→ (1 ≠ 0 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸))) |
| 24 | 22, 23 | mpi 20 |
. . . . . . . . . . 11
⊢ (1 = 0
→ (((𝑏 ∈ (0..^5)
∧ 𝑦 ∈ (0..^5))
∧ (〈1, ((𝑦 −
2) mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((1 = 0
∧ ((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) + 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 26 | 21, 25 | sylbi 217 |
. . . . . . . . 9
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 27 | 19, 20 | opth 5438 |
. . . . . . . . . 10
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ↔ (1 = 1 ∧ ((𝑦 + 2) mod 5) = (2nd
‘〈0, 𝑏〉))) |
| 28 | 7, 8 | op2nd 7979 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈0, 𝑏〉) = 𝑏 |
| 29 | 28 | eqeq2i 2743 |
. . . . . . . . . . 11
⊢ (((𝑦 + 2) mod 5) = (2nd
‘〈0, 𝑏〉)
↔ ((𝑦 + 2) mod 5) =
𝑏) |
| 30 | | ovex 7422 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 − 2) mod 5) ∈
V |
| 31 | 19, 30 | opth 5438 |
. . . . . . . . . . . . . . 15
⊢ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ↔ (1 = 0 ∧
((𝑦 − 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) + 1) mod 5))) |
| 32 | | eqneqall 2937 |
. . . . . . . . . . . . . . . . 17
⊢ (1 = 0
→ (1 ≠ 0 → ((𝑏
∈ (0..^5) ∧ 𝑦
∈ (0..^5)) → (((𝑦
+ 2) mod 5) = 𝑏 →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)))) |
| 33 | 22, 32 | mpi 20 |
. . . . . . . . . . . . . . . 16
⊢ (1 = 0
→ ((𝑏 ∈ (0..^5)
∧ 𝑦 ∈ (0..^5))
→ (((𝑦 + 2) mod 5) =
𝑏 → ¬ {〈0,
𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((1 = 0
∧ ((𝑦 − 2) mod 5)
= (((2nd ‘〈0, 𝑏〉) + 1) mod 5)) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 35 | 31, 34 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 36 | 19, 30 | opth 5438 |
. . . . . . . . . . . . . . 15
⊢ (〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ↔ (1 = 1 ∧ ((𝑦 − 2) mod 5) =
(2nd ‘〈0, 𝑏〉))) |
| 37 | 28 | eqeq2i 2743 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 − 2) mod 5) =
(2nd ‘〈0, 𝑏〉) ↔ ((𝑦 − 2) mod 5) = 𝑏) |
| 38 | | eqeq2 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = ((𝑦 − 2) mod 5) → (((𝑦 + 2) mod 5) = 𝑏 ↔ ((𝑦 + 2) mod 5) = ((𝑦 − 2) mod 5))) |
| 39 | 38 | eqcoms 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 − 2) mod 5) = 𝑏 → (((𝑦 + 2) mod 5) = 𝑏 ↔ ((𝑦 + 2) mod 5) = ((𝑦 − 2) mod 5))) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ (0..^5) ∧ ((𝑦 − 2) mod 5) = 𝑏) → (((𝑦 + 2) mod 5) = 𝑏 ↔ ((𝑦 + 2) mod 5) = ((𝑦 − 2) mod 5))) |
| 41 | | elfzoelz 13626 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → 𝑦 ∈
ℤ) |
| 42 | | 2z 12571 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℤ |
| 43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → 2 ∈
ℤ) |
| 44 | 41, 43 | zaddcld 12648 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0..^5) → (𝑦 + 2) ∈
ℤ) |
| 45 | 41, 43 | zsubcld 12649 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0..^5) → (𝑦 − 2) ∈
ℤ) |
| 46 | | 5nn 12273 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 5 ∈
ℕ |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0..^5) → 5 ∈
ℕ) |
| 48 | | difmod0 16263 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 + 2) ∈ ℤ ∧
(𝑦 − 2) ∈
ℤ ∧ 5 ∈ ℕ) → ((((𝑦 + 2) − (𝑦 − 2)) mod 5) = 0 ↔ ((𝑦 + 2) mod 5) = ((𝑦 − 2) mod
5))) |
| 49 | 48 | bicomd 223 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 + 2) ∈ ℤ ∧
(𝑦 − 2) ∈
ℤ ∧ 5 ∈ ℕ) → (((𝑦 + 2) mod 5) = ((𝑦 − 2) mod 5) ↔ (((𝑦 + 2) − (𝑦 − 2)) mod 5) =
0)) |
| 50 | 44, 45, 47, 49 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0..^5) → (((𝑦 + 2) mod 5) = ((𝑦 − 2) mod 5) ↔
(((𝑦 + 2) − (𝑦 − 2)) mod 5) =
0)) |
| 51 | 41 | zcnd 12645 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0..^5) → 𝑦 ∈
ℂ) |
| 52 | | 2cnd 12265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0..^5) → 2 ∈
ℂ) |
| 53 | 51, 52, 52 | pnncand 11578 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0..^5) → ((𝑦 + 2) − (𝑦 − 2)) = (2 +
2)) |
| 54 | | 2p2e4 12322 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (2 + 2) =
4 |
| 55 | 53, 54 | eqtrdi 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (0..^5) → ((𝑦 + 2) − (𝑦 − 2)) =
4) |
| 56 | 55 | oveq1d 7404 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (0..^5) → (((𝑦 + 2) − (𝑦 − 2)) mod 5) = (4 mod
5)) |
| 57 | 56 | eqeq1d 2732 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0..^5) → ((((𝑦 + 2) − (𝑦 − 2)) mod 5) = 0 ↔
(4 mod 5) = 0)) |
| 58 | | 4re 12271 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 4 ∈
ℝ |
| 59 | | 5rp 12964 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 5 ∈
ℝ+ |
| 60 | | 0re 11182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
ℝ |
| 61 | | 4pos 12294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 <
4 |
| 62 | 60, 58, 61 | ltleii 11303 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 0 ≤
4 |
| 63 | | 4lt5 12364 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 4 <
5 |
| 64 | | modid 13864 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((4
∈ ℝ ∧ 5 ∈ ℝ+) ∧ (0 ≤ 4 ∧ 4 <
5)) → (4 mod 5) = 4) |
| 65 | 58, 59, 62, 63, 64 | mp4an 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (4 mod 5)
= 4 |
| 66 | 65 | eqeq1i 2735 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((4 mod
5) = 0 ↔ 4 = 0) |
| 67 | | 4ne0 12295 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 4 ≠
0 |
| 68 | 67 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
({〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸 → 4
≠ 0) |
| 69 | 68 | necon2bi 2956 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (4 = 0
→ ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) |
| 70 | 66, 69 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((4 mod
5) = 0 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸) |
| 71 | 57, 70 | biimtrdi 253 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0..^5) → ((((𝑦 + 2) − (𝑦 − 2)) mod 5) = 0 →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 72 | 50, 71 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0..^5) → (((𝑦 + 2) mod 5) = ((𝑦 − 2) mod 5) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ (0..^5) ∧ ((𝑦 − 2) mod 5) = 𝑏) → (((𝑦 + 2) mod 5) = ((𝑦 − 2) mod 5) → ¬ {〈0,
𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 74 | 40, 73 | sylbid 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (0..^5) ∧ ((𝑦 − 2) mod 5) = 𝑏) → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 75 | 74 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0..^5) → (((𝑦 − 2) mod 5) = 𝑏 → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 76 | 75 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (((𝑦 − 2) mod 5) = 𝑏 → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 77 | 76 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 − 2) mod 5) = 𝑏 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 78 | 37, 77 | sylbi 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 − 2) mod 5) =
(2nd ‘〈0, 𝑏〉) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 79 | 36, 78 | simplbiim 504 |
. . . . . . . . . . . . . 14
⊢ (〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 80 | 19, 30 | opth 5438 |
. . . . . . . . . . . . . . 15
⊢ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉 ↔ (1 = 0
∧ ((𝑦 − 2) mod 5)
= (((2nd ‘〈0, 𝑏〉) − 1) mod 5))) |
| 81 | 33 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((1 = 0
∧ ((𝑦 − 2) mod 5)
= (((2nd ‘〈0, 𝑏〉) − 1) mod 5)) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 82 | 80, 81 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉 →
((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) →
(((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 83 | 35, 79, 82 | 3jaoi 1430 |
. . . . . . . . . . . . 13
⊢
((〈1, ((𝑦
− 2) mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨
〈1, ((𝑦 − 2) mod
5)〉 = 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉) →
((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) →
(((𝑦 + 2) mod 5) = 𝑏 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 84 | 83 | com13 88 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 2) mod 5) = 𝑏 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → ((〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸))) |
| 85 | 84 | impd 410 |
. . . . . . . . . . 11
⊢ (((𝑦 + 2) mod 5) = 𝑏 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 86 | 29, 85 | sylbi 217 |
. . . . . . . . . 10
⊢ (((𝑦 + 2) mod 5) = (2nd
‘〈0, 𝑏〉)
→ (((𝑏 ∈ (0..^5)
∧ 𝑦 ∈ (0..^5))
∧ (〈1, ((𝑦 −
2) mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 87 | 27, 86 | simplbiim 504 |
. . . . . . . . 9
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 88 | 19, 20 | opth 5438 |
. . . . . . . . . 10
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉 ↔ (1 = 0
∧ ((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) − 1) mod 5))) |
| 89 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ ((1 = 0
∧ ((𝑦 + 2) mod 5) =
(((2nd ‘〈0, 𝑏〉) − 1) mod 5)) → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 90 | 88, 89 | sylbi 217 |
. . . . . . . . 9
⊢ (〈1,
((𝑦 + 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉 →
(((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) ∧
(〈1, ((𝑦 − 2)
mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 91 | 26, 87, 90 | 3jaoi 1430 |
. . . . . . . 8
⊢
((〈1, ((𝑦 + 2)
mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 + 2) mod 5)〉 =
〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 + 2) mod 5)〉 = 〈0,
(((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉) →
(((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) ∧
(〈1, ((𝑦 − 2)
mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 92 | 18, 91 | syl 17 |
. . . . . . 7
⊢
({〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸 →
(((𝑏 ∈ (0..^5) ∧
𝑦 ∈ (0..^5)) ∧
(〈1, ((𝑦 − 2)
mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 93 | | ax-1 6 |
. . . . . . 7
⊢ (¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸 → (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸)) |
| 94 | 92, 93 | pm2.61i 182 |
. . . . . 6
⊢ (((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) ∧ (〈1,
((𝑦 − 2) mod 5)〉
= 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉)) →
¬ {〈0, 𝑏〉,
〈1, ((𝑦 + 2) mod
5)〉} ∈ 𝐸) |
| 95 | 94 | ex 412 |
. . . . 5
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
((〈1, ((𝑦 − 2)
mod 5)〉 = 〈0, (((2nd ‘〈0, 𝑏〉) + 1) mod 5)〉 ∨ 〈1,
((𝑦 − 2) mod 5)〉
= 〈1, (2nd ‘〈0, 𝑏〉)〉 ∨ 〈1, ((𝑦 − 2) mod 5)〉 =
〈0, (((2nd ‘〈0, 𝑏〉) − 1) mod 5)〉) → ¬
{〈0, 𝑏〉, 〈1,
((𝑦 + 2) mod 5)〉}
∈ 𝐸)) |
| 96 | 16, 95 | syld 47 |
. . . 4
⊢ ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) →
({〈1, ((𝑦 − 2)
mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 97 | 96 | adantl 481 |
. . 3
⊢ (((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) →
({〈1, ((𝑦 − 2)
mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 98 | | preq1 4699 |
. . . . . . 7
⊢ (𝐾 = 〈1, ((𝑦 − 2) mod 5)〉 → {𝐾, 〈0, 𝑏〉} = {〈1, ((𝑦 − 2) mod 5)〉, 〈0, 𝑏〉}) |
| 99 | 98 | eleq1d 2814 |
. . . . . 6
⊢ (𝐾 = 〈1, ((𝑦 − 2) mod 5)〉 → ({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ↔ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸)) |
| 100 | 99 | adantl 481 |
. . . . 5
⊢ ((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) → ({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ↔ {〈1, ((𝑦 − 2) mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸)) |
| 101 | | preq2 4700 |
. . . . . . . 8
⊢ (𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 → {〈0, 𝑏〉, 𝐿} = {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉}) |
| 102 | 101 | eleq1d 2814 |
. . . . . . 7
⊢ (𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 → ({〈0, 𝑏〉, 𝐿} ∈ 𝐸 ↔ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 103 | 102 | notbid 318 |
. . . . . 6
⊢ (𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 → (¬ {〈0,
𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 104 | 103 | adantr 480 |
. . . . 5
⊢ ((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) → (¬
{〈0, 𝑏〉, 𝐿} ∈ 𝐸 ↔ ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸)) |
| 105 | 100, 104 | imbi12d 344 |
. . . 4
⊢ ((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈1, ((𝑦 − 2) mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 106 | 105 | adantr 480 |
. . 3
⊢ (((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) →
(({𝐾, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) ↔ ({〈1, ((𝑦 − 2) mod 5)〉, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 〈1, ((𝑦 + 2) mod 5)〉} ∈ 𝐸))) |
| 107 | 97, 106 | mpbird 257 |
. 2
⊢ (((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → ({𝐾, 〈0, 𝑏〉} ∈ 𝐸 → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸)) |
| 108 | 107 | imp 406 |
1
⊢ ((((𝐿 = 〈1, ((𝑦 + 2) mod 5)〉 ∧ 𝐾 = 〈1, ((𝑦 − 2) mod 5)〉) ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) ∧ {𝐾, 〈0, 𝑏〉} ∈ 𝐸) → ¬ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) |