![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprnglem9 | Structured version Visualization version GIF version |
Description: Lemma 9 for pzriprng 21266: The ring unity of the ring 𝐽. (Contributed by AV, 22-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
Ref | Expression |
---|---|
pzriprnglem9 | ⊢ 1 = ⟨1, 0⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12596 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | c0ex 11212 | . . . . 5 ⊢ 0 ∈ V | |
3 | 2 | snid 4663 | . . . 4 ⊢ 0 ∈ {0} |
4 | pzriprng.i | . . . . . 6 ⊢ 𝐼 = (ℤ × {0}) | |
5 | 4 | eleq2i 2823 | . . . . 5 ⊢ (⟨1, 0⟩ ∈ 𝐼 ↔ ⟨1, 0⟩ ∈ (ℤ × {0})) |
6 | opelxp 5711 | . . . . 5 ⊢ (⟨1, 0⟩ ∈ (ℤ × {0}) ↔ (1 ∈ ℤ ∧ 0 ∈ {0})) | |
7 | 5, 6 | bitri 274 | . . . 4 ⊢ (⟨1, 0⟩ ∈ 𝐼 ↔ (1 ∈ ℤ ∧ 0 ∈ {0})) |
8 | 1, 3, 7 | mpbir2an 707 | . . 3 ⊢ ⟨1, 0⟩ ∈ 𝐼 |
9 | pzriprng.r | . . . . 5 ⊢ 𝑅 = (ℤring ×s ℤring) | |
10 | pzriprng.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
11 | 9, 4, 10 | pzriprnglem6 21255 | . . . 4 ⊢ (𝑥 ∈ 𝐼 → ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥)) |
12 | 11 | rgen 3061 | . . 3 ⊢ ∀𝑥 ∈ 𝐼 ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥) |
13 | 8, 12 | pm3.2i 469 | . 2 ⊢ (⟨1, 0⟩ ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥)) |
14 | 9, 4, 10 | pzriprnglem7 21256 | . . 3 ⊢ 𝐽 ∈ Ring |
15 | 9, 4 | pzriprnglem5 21254 | . . . . 5 ⊢ 𝐼 ∈ (SubRng‘𝑅) |
16 | 10 | subrngbas 20442 | . . . . 5 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 = (Base‘𝐽)) |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝐼 = (Base‘𝐽) |
18 | eqid 2730 | . . . 4 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
19 | pzriprng.1 | . . . 4 ⊢ 1 = (1r‘𝐽) | |
20 | 17, 18, 19 | isringid 20159 | . . 3 ⊢ (𝐽 ∈ Ring → ((⟨1, 0⟩ ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥)) ↔ 1 = ⟨1, 0⟩)) |
21 | 14, 20 | ax-mp 5 | . 2 ⊢ ((⟨1, 0⟩ ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((⟨1, 0⟩(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)⟨1, 0⟩) = 𝑥)) ↔ 1 = ⟨1, 0⟩) |
22 | 13, 21 | mpbi 229 | 1 ⊢ 1 = ⟨1, 0⟩ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 {csn 4627 ⟨cop 4633 × cxp 5673 ‘cfv 6542 (class class class)co 7411 0cc0 11112 1c1 11113 ℤcz 12562 Basecbs 17148 ↾s cress 17177 .rcmulr 17202 ×s cxps 17456 1rcur 20075 Ringcrg 20127 SubRngcsubrng 20433 ℤringczring 21217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-0g 17391 df-prds 17397 df-imas 17458 df-xps 17460 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-subg 19039 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-subrng 20434 df-subrg 20459 df-cnfld 21145 df-zring 21218 |
This theorem is referenced by: pzriprng1ALT 21265 |
Copyright terms: Public domain | W3C validator |