![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pzriprnglem9 | Structured version Visualization version GIF version |
Description: Lemma 9 for pzriprng 21440: The ring unity of the ring 𝐽. (Contributed by AV, 22-Mar-2025.) |
Ref | Expression |
---|---|
pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
Ref | Expression |
---|---|
pzriprnglem9 | ⊢ 1 = 〈1, 0〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12625 | . . . 4 ⊢ 1 ∈ ℤ | |
2 | c0ex 11240 | . . . . 5 ⊢ 0 ∈ V | |
3 | 2 | snid 4666 | . . . 4 ⊢ 0 ∈ {0} |
4 | pzriprng.i | . . . . . 6 ⊢ 𝐼 = (ℤ × {0}) | |
5 | 4 | eleq2i 2817 | . . . . 5 ⊢ (〈1, 0〉 ∈ 𝐼 ↔ 〈1, 0〉 ∈ (ℤ × {0})) |
6 | opelxp 5714 | . . . . 5 ⊢ (〈1, 0〉 ∈ (ℤ × {0}) ↔ (1 ∈ ℤ ∧ 0 ∈ {0})) | |
7 | 5, 6 | bitri 274 | . . . 4 ⊢ (〈1, 0〉 ∈ 𝐼 ↔ (1 ∈ ℤ ∧ 0 ∈ {0})) |
8 | 1, 3, 7 | mpbir2an 709 | . . 3 ⊢ 〈1, 0〉 ∈ 𝐼 |
9 | pzriprng.r | . . . . 5 ⊢ 𝑅 = (ℤring ×s ℤring) | |
10 | pzriprng.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
11 | 9, 4, 10 | pzriprnglem6 21429 | . . . 4 ⊢ (𝑥 ∈ 𝐼 → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
12 | 11 | rgen 3052 | . . 3 ⊢ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥) |
13 | 8, 12 | pm3.2i 469 | . 2 ⊢ (〈1, 0〉 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
14 | 9, 4, 10 | pzriprnglem7 21430 | . . 3 ⊢ 𝐽 ∈ Ring |
15 | 9, 4 | pzriprnglem5 21428 | . . . . 5 ⊢ 𝐼 ∈ (SubRng‘𝑅) |
16 | 10 | subrngbas 20503 | . . . . 5 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 = (Base‘𝐽)) |
17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝐼 = (Base‘𝐽) |
18 | eqid 2725 | . . . 4 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
19 | pzriprng.1 | . . . 4 ⊢ 1 = (1r‘𝐽) | |
20 | 17, 18, 19 | isringid 20219 | . . 3 ⊢ (𝐽 ∈ Ring → ((〈1, 0〉 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) ↔ 1 = 〈1, 0〉)) |
21 | 14, 20 | ax-mp 5 | . 2 ⊢ ((〈1, 0〉 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) ↔ 1 = 〈1, 0〉) |
22 | 13, 21 | mpbi 229 | 1 ⊢ 1 = 〈1, 0〉 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {csn 4630 〈cop 4636 × cxp 5676 ‘cfv 6549 (class class class)co 7419 0cc0 11140 1c1 11141 ℤcz 12591 Basecbs 17183 ↾s cress 17212 .rcmulr 17237 ×s cxps 17491 1rcur 20133 Ringcrg 20185 SubRngcsubrng 20494 ℤringczring 21389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-addf 11219 ax-mulf 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-0g 17426 df-prds 17432 df-imas 17493 df-xps 17495 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-subg 19086 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-cring 20188 df-subrng 20495 df-subrg 20520 df-cnfld 21297 df-zring 21390 |
This theorem is referenced by: pzriprng1ALT 21439 |
Copyright terms: Public domain | W3C validator |