| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pzriprnglem9 | Structured version Visualization version GIF version | ||
| Description: Lemma 9 for pzriprng 21427: The ring unity of the ring 𝐽. (Contributed by AV, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| pzriprng.r | ⊢ 𝑅 = (ℤring ×s ℤring) |
| pzriprng.i | ⊢ 𝐼 = (ℤ × {0}) |
| pzriprng.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| pzriprng.1 | ⊢ 1 = (1r‘𝐽) |
| Ref | Expression |
|---|---|
| pzriprnglem9 | ⊢ 1 = 〈1, 0〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12494 | . . . 4 ⊢ 1 ∈ ℤ | |
| 2 | c0ex 11098 | . . . . 5 ⊢ 0 ∈ V | |
| 3 | 2 | snid 4613 | . . . 4 ⊢ 0 ∈ {0} |
| 4 | pzriprng.i | . . . . . 6 ⊢ 𝐼 = (ℤ × {0}) | |
| 5 | 4 | eleq2i 2821 | . . . . 5 ⊢ (〈1, 0〉 ∈ 𝐼 ↔ 〈1, 0〉 ∈ (ℤ × {0})) |
| 6 | opelxp 5650 | . . . . 5 ⊢ (〈1, 0〉 ∈ (ℤ × {0}) ↔ (1 ∈ ℤ ∧ 0 ∈ {0})) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ (〈1, 0〉 ∈ 𝐼 ↔ (1 ∈ ℤ ∧ 0 ∈ {0})) |
| 8 | 1, 3, 7 | mpbir2an 711 | . . 3 ⊢ 〈1, 0〉 ∈ 𝐼 |
| 9 | pzriprng.r | . . . . 5 ⊢ 𝑅 = (ℤring ×s ℤring) | |
| 10 | pzriprng.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 11 | 9, 4, 10 | pzriprnglem6 21416 | . . . 4 ⊢ (𝑥 ∈ 𝐼 → ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 12 | 11 | rgen 3047 | . . 3 ⊢ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥) |
| 13 | 8, 12 | pm3.2i 470 | . 2 ⊢ (〈1, 0〉 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) |
| 14 | 9, 4, 10 | pzriprnglem7 21417 | . . 3 ⊢ 𝐽 ∈ Ring |
| 15 | 9, 4 | pzriprnglem5 21415 | . . . . 5 ⊢ 𝐼 ∈ (SubRng‘𝑅) |
| 16 | 10 | subrngbas 20462 | . . . . 5 ⊢ (𝐼 ∈ (SubRng‘𝑅) → 𝐼 = (Base‘𝐽)) |
| 17 | 15, 16 | ax-mp 5 | . . . 4 ⊢ 𝐼 = (Base‘𝐽) |
| 18 | eqid 2730 | . . . 4 ⊢ (.r‘𝐽) = (.r‘𝐽) | |
| 19 | pzriprng.1 | . . . 4 ⊢ 1 = (1r‘𝐽) | |
| 20 | 17, 18, 19 | isringid 20182 | . . 3 ⊢ (𝐽 ∈ Ring → ((〈1, 0〉 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) ↔ 1 = 〈1, 0〉)) |
| 21 | 14, 20 | ax-mp 5 | . 2 ⊢ ((〈1, 0〉 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((〈1, 0〉(.r‘𝐽)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐽)〈1, 0〉) = 𝑥)) ↔ 1 = 〈1, 0〉) |
| 22 | 13, 21 | mpbi 230 | 1 ⊢ 1 = 〈1, 0〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 {csn 4574 〈cop 4580 × cxp 5612 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 ℤcz 12460 Basecbs 17112 ↾s cress 17133 .rcmulr 17154 ×s cxps 17402 1rcur 20092 Ringcrg 20144 SubRngcsubrng 20453 ℤringczring 21376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-0g 17337 df-prds 17343 df-imas 17404 df-xps 17406 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-subg 19028 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-subrng 20454 df-subrg 20478 df-cnfld 21285 df-zring 21377 |
| This theorem is referenced by: pzriprng1ALT 21426 |
| Copyright terms: Public domain | W3C validator |