![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphassi | Structured version Visualization version GIF version |
Description: Associative law for the first argument of an inner product with scalar _𝑖. (Contributed by AV, 17-Oct-2021.) |
Ref | Expression |
---|---|
cphassi.x | ⊢ 𝑋 = (Base‘𝑊) |
cphassi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
cphassi.i | ⊢ , = (·𝑖‘𝑊) |
cphassi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphassi.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
cphassi | ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1196 | . 2 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑊 ∈ ℂPreHil) | |
2 | simp1r 1197 | . 2 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → i ∈ 𝐾) | |
3 | simp3 1137 | . 2 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
4 | simp2 1136 | . 2 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
5 | cphassi.i | . . 3 ⊢ , = (·𝑖‘𝑊) | |
6 | cphassi.x | . . 3 ⊢ 𝑋 = (Base‘𝑊) | |
7 | cphassi.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
8 | cphassi.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
9 | cphassi.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | 5, 6, 7, 8, 9 | cphass 24972 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1371 | 1 ⊢ (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((i · 𝐵) , 𝐴) = (i · (𝐵 , 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 ici 11118 · cmul 11121 Basecbs 17151 Scalarcsca 17207 ·𝑠 cvsca 17208 ·𝑖cip 17209 ℂPreHilccph 24927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-seq 13974 df-exp 14035 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-subg 19043 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-cring 20134 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-subrg 20463 df-drng 20506 df-lmod 20620 df-lmhm 20781 df-lvec 20862 df-sra 20934 df-rgmod 20935 df-cnfld 21149 df-phl 21402 df-nlm 24328 df-clm 24823 df-cph 24929 |
This theorem is referenced by: cphipval2 25002 |
Copyright terms: Public domain | W3C validator |