Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumwrd2dccatlem Structured version   Visualization version   GIF version

Theorem gsumwrd2dccatlem 33013
Description: Lemma for gsumwrd2dccat 33014. Expose a bijection 𝐹 between (ordered) pairs of words and words with a length of a subword. (Contributed by Thierry Arnoux, 5-Oct-2025.)
Hypotheses
Ref Expression
gsumwrd2dccatlem.u 𝑈 = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))
gsumwrd2dccatlem.f 𝐹 = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩)
gsumwrd2dccatlem.g 𝐺 = (𝑏𝑈 ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)
gsumwrd2dccatlem.a (𝜑𝐴𝑉)
Assertion
Ref Expression
gsumwrd2dccatlem (𝜑 → (𝐹:(Word 𝐴 × Word 𝐴)–1-1-onto𝑈𝐹 = 𝐺))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑤   𝐹,𝑏   𝑈,𝑎,𝑏   𝜑,𝑎,𝑏,𝑤
Allowed substitution hints:   𝑈(𝑤)   𝐹(𝑤,𝑎)   𝐺(𝑤,𝑎,𝑏)   𝑉(𝑤,𝑎,𝑏)

Proof of Theorem gsumwrd2dccatlem
Dummy variables 𝑛 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumwrd2dccatlem.f . . . 4 𝐹 = (𝑎 ∈ (Word 𝐴 × Word 𝐴) ↦ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩)
2 sneq 4602 . . . . . . . . 9 (𝑤 = ((1st𝑎) ++ (2nd𝑎)) → {𝑤} = {((1st𝑎) ++ (2nd𝑎))})
3 fveq2 6861 . . . . . . . . . 10 (𝑤 = ((1st𝑎) ++ (2nd𝑎)) → (♯‘𝑤) = (♯‘((1st𝑎) ++ (2nd𝑎))))
43oveq2d 7406 . . . . . . . . 9 (𝑤 = ((1st𝑎) ++ (2nd𝑎)) → (0...(♯‘𝑤)) = (0...(♯‘((1st𝑎) ++ (2nd𝑎)))))
52, 4xpeq12d 5672 . . . . . . . 8 (𝑤 = ((1st𝑎) ++ (2nd𝑎)) → ({𝑤} × (0...(♯‘𝑤))) = ({((1st𝑎) ++ (2nd𝑎))} × (0...(♯‘((1st𝑎) ++ (2nd𝑎))))))
65eleq2d 2815 . . . . . . 7 (𝑤 = ((1st𝑎) ++ (2nd𝑎)) → (⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ∈ ({𝑤} × (0...(♯‘𝑤))) ↔ ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ∈ ({((1st𝑎) ++ (2nd𝑎))} × (0...(♯‘((1st𝑎) ++ (2nd𝑎)))))))
7 xp1st 8003 . . . . . . . . 9 (𝑎 ∈ (Word 𝐴 × Word 𝐴) → (1st𝑎) ∈ Word 𝐴)
87adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (1st𝑎) ∈ Word 𝐴)
9 xp2nd 8004 . . . . . . . . 9 (𝑎 ∈ (Word 𝐴 × Word 𝐴) → (2nd𝑎) ∈ Word 𝐴)
109adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (2nd𝑎) ∈ Word 𝐴)
11 ccatcl 14546 . . . . . . . 8 (((1st𝑎) ∈ Word 𝐴 ∧ (2nd𝑎) ∈ Word 𝐴) → ((1st𝑎) ++ (2nd𝑎)) ∈ Word 𝐴)
128, 10, 11syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((1st𝑎) ++ (2nd𝑎)) ∈ Word 𝐴)
13 ovex 7423 . . . . . . . . . 10 ((1st𝑎) ++ (2nd𝑎)) ∈ V
1413snid 4629 . . . . . . . . 9 ((1st𝑎) ++ (2nd𝑎)) ∈ {((1st𝑎) ++ (2nd𝑎))}
1514a1i 11 . . . . . . . 8 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((1st𝑎) ++ (2nd𝑎)) ∈ {((1st𝑎) ++ (2nd𝑎))})
16 0zd 12548 . . . . . . . . 9 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 0 ∈ ℤ)
17 lencl 14505 . . . . . . . . . . 11 (((1st𝑎) ++ (2nd𝑎)) ∈ Word 𝐴 → (♯‘((1st𝑎) ++ (2nd𝑎))) ∈ ℕ0)
1812, 17syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘((1st𝑎) ++ (2nd𝑎))) ∈ ℕ0)
1918nn0zd 12562 . . . . . . . . 9 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘((1st𝑎) ++ (2nd𝑎))) ∈ ℤ)
20 lencl 14505 . . . . . . . . . . 11 ((1st𝑎) ∈ Word 𝐴 → (♯‘(1st𝑎)) ∈ ℕ0)
218, 20syl 17 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(1st𝑎)) ∈ ℕ0)
2221nn0zd 12562 . . . . . . . . 9 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(1st𝑎)) ∈ ℤ)
2321nn0ge0d 12513 . . . . . . . . 9 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 0 ≤ (♯‘(1st𝑎)))
24 lencl 14505 . . . . . . . . . . . . 13 ((2nd𝑎) ∈ Word 𝐴 → (♯‘(2nd𝑎)) ∈ ℕ0)
2510, 24syl 17 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(2nd𝑎)) ∈ ℕ0)
2625nn0ge0d 12513 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 0 ≤ (♯‘(2nd𝑎)))
2721nn0red 12511 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(1st𝑎)) ∈ ℝ)
2825nn0red 12511 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(2nd𝑎)) ∈ ℝ)
2927, 28addge01d 11773 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (0 ≤ (♯‘(2nd𝑎)) ↔ (♯‘(1st𝑎)) ≤ ((♯‘(1st𝑎)) + (♯‘(2nd𝑎)))))
3026, 29mpbid 232 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(1st𝑎)) ≤ ((♯‘(1st𝑎)) + (♯‘(2nd𝑎))))
31 ccatlen 14547 . . . . . . . . . . 11 (((1st𝑎) ∈ Word 𝐴 ∧ (2nd𝑎) ∈ Word 𝐴) → (♯‘((1st𝑎) ++ (2nd𝑎))) = ((♯‘(1st𝑎)) + (♯‘(2nd𝑎))))
328, 10, 31syl2anc 584 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘((1st𝑎) ++ (2nd𝑎))) = ((♯‘(1st𝑎)) + (♯‘(2nd𝑎))))
3330, 32breqtrrd 5138 . . . . . . . . 9 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(1st𝑎)) ≤ (♯‘((1st𝑎) ++ (2nd𝑎))))
3416, 19, 22, 23, 33elfzd 13483 . . . . . . . 8 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (♯‘(1st𝑎)) ∈ (0...(♯‘((1st𝑎) ++ (2nd𝑎)))))
3515, 34opelxpd 5680 . . . . . . 7 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ∈ ({((1st𝑎) ++ (2nd𝑎))} × (0...(♯‘((1st𝑎) ++ (2nd𝑎))))))
366, 12, 35rspcedvdw 3594 . . . . . 6 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ∃𝑤 ∈ Word 𝐴⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ∈ ({𝑤} × (0...(♯‘𝑤))))
3736eliund 4965 . . . . 5 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ∈ 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
38 gsumwrd2dccatlem.u . . . . 5 𝑈 = 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤)))
3937, 38eleqtrrdi 2840 . . . 4 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ∈ 𝑈)
40 simpr 484 . . . . . . . . . 10 (((𝜑𝑢 ∈ Word 𝐴) ∧ 𝑏 ∈ ({𝑢} × (0...(♯‘𝑢)))) → 𝑏 ∈ ({𝑢} × (0...(♯‘𝑢))))
41 xp1st 8003 . . . . . . . . . 10 (𝑏 ∈ ({𝑢} × (0...(♯‘𝑢))) → (1st𝑏) ∈ {𝑢})
42 elsni 4609 . . . . . . . . . 10 ((1st𝑏) ∈ {𝑢} → (1st𝑏) = 𝑢)
4340, 41, 423syl 18 . . . . . . . . 9 (((𝜑𝑢 ∈ Word 𝐴) ∧ 𝑏 ∈ ({𝑢} × (0...(♯‘𝑢)))) → (1st𝑏) = 𝑢)
44 simplr 768 . . . . . . . . 9 (((𝜑𝑢 ∈ Word 𝐴) ∧ 𝑏 ∈ ({𝑢} × (0...(♯‘𝑢)))) → 𝑢 ∈ Word 𝐴)
4543, 44eqeltrd 2829 . . . . . . . 8 (((𝜑𝑢 ∈ Word 𝐴) ∧ 𝑏 ∈ ({𝑢} × (0...(♯‘𝑢)))) → (1st𝑏) ∈ Word 𝐴)
4645adantllr 719 . . . . . . 7 ((((𝜑𝑏𝑈) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑏 ∈ ({𝑢} × (0...(♯‘𝑢)))) → (1st𝑏) ∈ Word 𝐴)
4738eleq2i 2821 . . . . . . . . . . 11 (𝑏𝑈𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
4847biimpi 216 . . . . . . . . . 10 (𝑏𝑈𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
4948adantl 481 . . . . . . . . 9 ((𝜑𝑏𝑈) → 𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
50 eliun 4962 . . . . . . . . 9 (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝐴𝑏 ∈ ({𝑤} × (0...(♯‘𝑤))))
5149, 50sylib 218 . . . . . . . 8 ((𝜑𝑏𝑈) → ∃𝑤 ∈ Word 𝐴𝑏 ∈ ({𝑤} × (0...(♯‘𝑤))))
52 sneq 4602 . . . . . . . . . . 11 (𝑢 = 𝑤 → {𝑢} = {𝑤})
53 fveq2 6861 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (♯‘𝑢) = (♯‘𝑤))
5453oveq2d 7406 . . . . . . . . . . 11 (𝑢 = 𝑤 → (0...(♯‘𝑢)) = (0...(♯‘𝑤)))
5552, 54xpeq12d 5672 . . . . . . . . . 10 (𝑢 = 𝑤 → ({𝑢} × (0...(♯‘𝑢))) = ({𝑤} × (0...(♯‘𝑤))))
5655eleq2d 2815 . . . . . . . . 9 (𝑢 = 𝑤 → (𝑏 ∈ ({𝑢} × (0...(♯‘𝑢))) ↔ 𝑏 ∈ ({𝑤} × (0...(♯‘𝑤)))))
5756cbvrexvw 3217 . . . . . . . 8 (∃𝑢 ∈ Word 𝐴𝑏 ∈ ({𝑢} × (0...(♯‘𝑢))) ↔ ∃𝑤 ∈ Word 𝐴𝑏 ∈ ({𝑤} × (0...(♯‘𝑤))))
5851, 57sylibr 234 . . . . . . 7 ((𝜑𝑏𝑈) → ∃𝑢 ∈ Word 𝐴𝑏 ∈ ({𝑢} × (0...(♯‘𝑢))))
5946, 58r19.29a 3142 . . . . . 6 ((𝜑𝑏𝑈) → (1st𝑏) ∈ Word 𝐴)
60 pfxcl 14649 . . . . . 6 ((1st𝑏) ∈ Word 𝐴 → ((1st𝑏) prefix (2nd𝑏)) ∈ Word 𝐴)
6159, 60syl 17 . . . . 5 ((𝜑𝑏𝑈) → ((1st𝑏) prefix (2nd𝑏)) ∈ Word 𝐴)
62 swrdcl 14617 . . . . . 6 ((1st𝑏) ∈ Word 𝐴 → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) ∈ Word 𝐴)
6359, 62syl 17 . . . . 5 ((𝜑𝑏𝑈) → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) ∈ Word 𝐴)
6461, 63opelxpd 5680 . . . 4 ((𝜑𝑏𝑈) → ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ∈ (Word 𝐴 × Word 𝐴))
6549adantr 480 . . . . . . . . . 10 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))))
66 eliunxp 5804 . . . . . . . . . 10 (𝑏 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ↔ ∃𝑤𝑛(𝑏 = ⟨𝑤, 𝑛⟩ ∧ (𝑤 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑤)))))
6765, 66sylib 218 . . . . . . . . 9 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ∃𝑤𝑛(𝑏 = ⟨𝑤, 𝑛⟩ ∧ (𝑤 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑤)))))
68 opeq1 4840 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → ⟨𝑢, 𝑛⟩ = ⟨𝑤, 𝑛⟩)
6968eqeq2d 2741 . . . . . . . . . . . 12 (𝑢 = 𝑤 → (𝑏 = ⟨𝑢, 𝑛⟩ ↔ 𝑏 = ⟨𝑤, 𝑛⟩))
70 eleq1w 2812 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → (𝑢 ∈ Word 𝐴𝑤 ∈ Word 𝐴))
7154eleq2d 2815 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → (𝑛 ∈ (0...(♯‘𝑢)) ↔ 𝑛 ∈ (0...(♯‘𝑤))))
7270, 71anbi12d 632 . . . . . . . . . . . 12 (𝑢 = 𝑤 → ((𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢))) ↔ (𝑤 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑤)))))
7369, 72anbi12d 632 . . . . . . . . . . 11 (𝑢 = 𝑤 → ((𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))) ↔ (𝑏 = ⟨𝑤, 𝑛⟩ ∧ (𝑤 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑤))))))
7473exbidv 1921 . . . . . . . . . 10 (𝑢 = 𝑤 → (∃𝑛(𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))) ↔ ∃𝑛(𝑏 = ⟨𝑤, 𝑛⟩ ∧ (𝑤 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑤))))))
7574cbvexvw 2037 . . . . . . . . 9 (∃𝑢𝑛(𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))) ↔ ∃𝑤𝑛(𝑏 = ⟨𝑤, 𝑛⟩ ∧ (𝑤 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑤)))))
7667, 75sylibr 234 . . . . . . . 8 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ∃𝑢𝑛(𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))))
77 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (1st𝑎) = ((1st𝑏) prefix (2nd𝑏)))
78 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩))
7977, 78oveq12d 7408 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → ((1st𝑎) ++ (2nd𝑎)) = (((1st𝑏) prefix (2nd𝑏)) ++ ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)))
80 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑢 ∈ V
81 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑛 ∈ V
8280, 81op1std 7981 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ⟨𝑢, 𝑛⟩ → (1st𝑏) = 𝑢)
8382ad5antlr 735 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (1st𝑏) = 𝑢)
84 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → 𝑢 ∈ Word 𝐴)
8583, 84eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (1st𝑏) ∈ Word 𝐴)
8680, 81op2ndd 7982 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = ⟨𝑢, 𝑛⟩ → (2nd𝑏) = 𝑛)
8786ad5antlr 735 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (2nd𝑏) = 𝑛)
88 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → 𝑛 ∈ (0...(♯‘𝑢)))
8983eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → 𝑢 = (1st𝑏))
9089fveq2d 6865 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (♯‘𝑢) = (♯‘(1st𝑏)))
9190oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (0...(♯‘𝑢)) = (0...(♯‘(1st𝑏))))
9288, 91eleqtrd 2831 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → 𝑛 ∈ (0...(♯‘(1st𝑏))))
9387, 92eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (2nd𝑏) ∈ (0...(♯‘(1st𝑏))))
94 pfxcctswrd 14682 . . . . . . . . . . . . . . . . . 18 (((1st𝑏) ∈ Word 𝐴 ∧ (2nd𝑏) ∈ (0...(♯‘(1st𝑏)))) → (((1st𝑏) prefix (2nd𝑏)) ++ ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) = (1st𝑏))
9585, 93, 94syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (((1st𝑏) prefix (2nd𝑏)) ++ ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) = (1st𝑏))
9679, 95eqtr2d 2766 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (1st𝑏) = ((1st𝑎) ++ (2nd𝑎)))
9777fveq2d 6865 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (♯‘(1st𝑎)) = (♯‘((1st𝑏) prefix (2nd𝑏))))
98 pfxlen 14655 . . . . . . . . . . . . . . . . . 18 (((1st𝑏) ∈ Word 𝐴 ∧ (2nd𝑏) ∈ (0...(♯‘(1st𝑏)))) → (♯‘((1st𝑏) prefix (2nd𝑏))) = (2nd𝑏))
9985, 93, 98syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (♯‘((1st𝑏) prefix (2nd𝑏))) = (2nd𝑏))
10097, 99eqtr2d 2766 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → (2nd𝑏) = (♯‘(1st𝑎)))
10196, 100jca 511 . . . . . . . . . . . . . . 15 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑎) = ((1st𝑏) prefix (2nd𝑏))) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) → ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎))))
102101anasss 466 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ ((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩))) → ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎))))
103 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (1st𝑏) = ((1st𝑎) ++ (2nd𝑎)))
104 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (2nd𝑏) = (♯‘(1st𝑎)))
105103, 104oveq12d 7408 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → ((1st𝑏) prefix (2nd𝑏)) = (((1st𝑎) ++ (2nd𝑎)) prefix (♯‘(1st𝑎))))
1068ad5antr 734 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (1st𝑎) ∈ Word 𝐴)
10710ad5antr 734 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (2nd𝑎) ∈ Word 𝐴)
108 pfxccat1 14674 . . . . . . . . . . . . . . . . . 18 (((1st𝑎) ∈ Word 𝐴 ∧ (2nd𝑎) ∈ Word 𝐴) → (((1st𝑎) ++ (2nd𝑎)) prefix (♯‘(1st𝑎))) = (1st𝑎))
109106, 107, 108syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (((1st𝑎) ++ (2nd𝑎)) prefix (♯‘(1st𝑎))) = (1st𝑎))
110105, 109eqtr2d 2766 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (1st𝑎) = ((1st𝑏) prefix (2nd𝑏)))
111103fveq2d 6865 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (♯‘(1st𝑏)) = (♯‘((1st𝑎) ++ (2nd𝑎))))
112106, 107, 31syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (♯‘((1st𝑎) ++ (2nd𝑎))) = ((♯‘(1st𝑎)) + (♯‘(2nd𝑎))))
113111, 112eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (♯‘(1st𝑏)) = ((♯‘(1st𝑎)) + (♯‘(2nd𝑎))))
114104, 113opeq12d 4848 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → ⟨(2nd𝑏), (♯‘(1st𝑏))⟩ = ⟨(♯‘(1st𝑎)), ((♯‘(1st𝑎)) + (♯‘(2nd𝑎)))⟩)
115103, 114oveq12d 7408 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩) = (((1st𝑎) ++ (2nd𝑎)) substr ⟨(♯‘(1st𝑎)), ((♯‘(1st𝑎)) + (♯‘(2nd𝑎)))⟩))
116 swrdccat2 14641 . . . . . . . . . . . . . . . . . 18 (((1st𝑎) ∈ Word 𝐴 ∧ (2nd𝑎) ∈ Word 𝐴) → (((1st𝑎) ++ (2nd𝑎)) substr ⟨(♯‘(1st𝑎)), ((♯‘(1st𝑎)) + (♯‘(2nd𝑎)))⟩) = (2nd𝑎))
117106, 107, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (((1st𝑎) ++ (2nd𝑎)) substr ⟨(♯‘(1st𝑎)), ((♯‘(1st𝑎)) + (♯‘(2nd𝑎)))⟩) = (2nd𝑎))
118115, 117eqtr2d 2766 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩))
119110, 118jca 511 . . . . . . . . . . . . . . 15 (((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ (1st𝑏) = ((1st𝑎) ++ (2nd𝑎))) ∧ (2nd𝑏) = (♯‘(1st𝑎))) → ((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)))
120119anasss 466 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) ∧ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎)))) → ((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)))
121102, 120impbida 800 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ 𝑢 ∈ Word 𝐴) ∧ 𝑛 ∈ (0...(♯‘𝑢))) → (((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎)))))
122121anasss 466 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏 = ⟨𝑢, 𝑛⟩) ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))) → (((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎)))))
123122expl 457 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))) → (((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎))))))
124123adantlr 715 . . . . . . . . . 10 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → ((𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))) → (((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎))))))
125124exlimdv 1933 . . . . . . . . 9 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (∃𝑛(𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢)))) → (((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎))))))
126125imp 406 . . . . . . . 8 ((((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ ∃𝑛(𝑏 = ⟨𝑢, 𝑛⟩ ∧ (𝑢 ∈ Word 𝐴𝑛 ∈ (0...(♯‘𝑢))))) → (((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎)))))
12776, 126exlimddv 1935 . . . . . . 7 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)) ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎)))))
128 eqop 8013 . . . . . . . 8 (𝑎 ∈ (Word 𝐴 × Word 𝐴) → (𝑎 = ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ↔ ((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩))))
129128adantl 481 . . . . . . 7 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑎 = ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ↔ ((1st𝑎) = ((1st𝑏) prefix (2nd𝑏)) ∧ (2nd𝑎) = ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩))))
130 snssi 4775 . . . . . . . . . . . . 13 (𝑤 ∈ Word 𝐴 → {𝑤} ⊆ Word 𝐴)
131130adantl 481 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑤 ∈ Word 𝐴) → {𝑤} ⊆ Word 𝐴)
132 fz0ssnn0 13590 . . . . . . . . . . . 12 (0...(♯‘𝑤)) ⊆ ℕ0
133 xpss12 5656 . . . . . . . . . . . 12 (({𝑤} ⊆ Word 𝐴 ∧ (0...(♯‘𝑤)) ⊆ ℕ0) → ({𝑤} × (0...(♯‘𝑤))) ⊆ (Word 𝐴 × ℕ0))
134131, 132, 133sylancl 586 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑤 ∈ Word 𝐴) → ({𝑤} × (0...(♯‘𝑤))) ⊆ (Word 𝐴 × ℕ0))
135134iunssd 5017 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ⊆ (Word 𝐴 × ℕ0))
136135adantlr 715 . . . . . . . . 9 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑤 ∈ Word 𝐴({𝑤} × (0...(♯‘𝑤))) ⊆ (Word 𝐴 × ℕ0))
137136, 65sseldd 3950 . . . . . . . 8 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → 𝑏 ∈ (Word 𝐴 × ℕ0))
138 eqop 8013 . . . . . . . 8 (𝑏 ∈ (Word 𝐴 × ℕ0) → (𝑏 = ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎)))))
139137, 138syl 17 . . . . . . 7 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑏 = ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩ ↔ ((1st𝑏) = ((1st𝑎) ++ (2nd𝑎)) ∧ (2nd𝑏) = (♯‘(1st𝑎)))))
140127, 129, 1393bitr4d 311 . . . . . 6 (((𝜑𝑏𝑈) ∧ 𝑎 ∈ (Word 𝐴 × Word 𝐴)) → (𝑎 = ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ↔ 𝑏 = ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩))
141140an32s 652 . . . . 5 (((𝜑𝑎 ∈ (Word 𝐴 × Word 𝐴)) ∧ 𝑏𝑈) → (𝑎 = ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ↔ 𝑏 = ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩))
142141anasss 466 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Word 𝐴 × Word 𝐴) ∧ 𝑏𝑈)) → (𝑎 = ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩ ↔ 𝑏 = ⟨((1st𝑎) ++ (2nd𝑎)), (♯‘(1st𝑎))⟩))
1431, 39, 64, 142f1ocnv2d 7645 . . 3 (𝜑 → (𝐹:(Word 𝐴 × Word 𝐴)–1-1-onto𝑈𝐹 = (𝑏𝑈 ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)))
144143simpld 494 . 2 (𝜑𝐹:(Word 𝐴 × Word 𝐴)–1-1-onto𝑈)
145143simprd 495 . . 3 (𝜑𝐹 = (𝑏𝑈 ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩))
146 gsumwrd2dccatlem.g . . 3 𝐺 = (𝑏𝑈 ↦ ⟨((1st𝑏) prefix (2nd𝑏)), ((1st𝑏) substr ⟨(2nd𝑏), (♯‘(1st𝑏))⟩)⟩)
147145, 146eqtr4di 2783 . 2 (𝜑𝐹 = 𝐺)
148144, 147jca 511 1 (𝜑 → (𝐹:(Word 𝐴 × Word 𝐴)–1-1-onto𝑈𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  wss 3917  {csn 4592  cop 4598   ciun 4958   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  0cc0 11075   + caddc 11078  cle 11216  0cn0 12449  ...cfz 13475  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612   prefix cpfx 14642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613  df-pfx 14643
This theorem is referenced by:  gsumwrd2dccat  33014
  Copyright terms: Public domain W3C validator