Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1fima2sn | Structured version Visualization version GIF version |
Description: Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1fima2sn | ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ (𝐵 ∖ {0})) → (vol‘(◡𝐹 “ {𝐴})) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 4073 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∖ {0}) → ¬ 𝐴 ∈ {0}) | |
2 | elsni 4588 | . . . 4 ⊢ (0 ∈ {𝐴} → 0 = 𝐴) | |
3 | snidg 4605 | . . . 4 ⊢ (0 ∈ {𝐴} → 0 ∈ {0}) | |
4 | 2, 3 | eqeltrrd 2839 | . . 3 ⊢ (0 ∈ {𝐴} → 𝐴 ∈ {0}) |
5 | 1, 4 | nsyl 140 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {0}) → ¬ 0 ∈ {𝐴}) |
6 | i1fima2 24915 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ ¬ 0 ∈ {𝐴}) → (vol‘(◡𝐹 “ {𝐴})) ∈ ℝ) | |
7 | 5, 6 | sylan2 593 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝐴 ∈ (𝐵 ∖ {0})) → (vol‘(◡𝐹 “ {𝐴})) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2105 ∖ cdif 3894 {csn 4571 ◡ccnv 5606 dom cdm 5607 “ cima 5610 ‘cfv 6465 ℝcr 10943 0cc0 10944 volcvol 24699 ∫1citg1 24851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-er 8546 df-map 8665 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-sup 9271 df-inf 9272 df-oi 9339 df-dju 9730 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-q 12762 df-rp 12804 df-xadd 12922 df-ioo 13156 df-ico 13158 df-icc 13159 df-fz 13313 df-fzo 13456 df-fl 13585 df-seq 13795 df-exp 13856 df-hash 14118 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-clim 15269 df-sum 15470 df-xmet 20662 df-met 20663 df-ovol 24700 df-vol 24701 df-mbf 24855 df-itg1 24856 |
This theorem is referenced by: itg1val2 24920 itg1cl 24921 itg1ge0 24922 i1fadd 24931 i1fmul 24932 itg1addlem2 24933 i1fmulc 24940 itg1mulc 24941 i1fres 24942 itg1ge0a 24948 itg1climres 24951 |
Copyright terms: Public domain | W3C validator |