Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnprodcl Structured version   Visualization version   GIF version

Theorem ovnprodcl 44343
Description: The product used in the definition of the outer Lebesgue measure in R^n is a nonnegative real. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnprodcl.kph 𝑘𝜑
ovnprodcl.x (𝜑𝑋 ∈ Fin)
ovnprodcl.f (𝜑𝐹:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
ovnprodcl.i (𝜑𝐼 ∈ ℕ)
Assertion
Ref Expression
ovnprodcl (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐹𝐼))‘𝑘)) ∈ (0[,)+∞))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝐼(𝑘)

Proof of Theorem ovnprodcl
StepHypRef Expression
1 ovnprodcl.kph . 2 𝑘𝜑
2 ovnprodcl.x . 2 (𝜑𝑋 ∈ Fin)
3 ovnprodcl.f . . . 4 (𝜑𝐹:ℕ⟶((ℝ × ℝ) ↑m 𝑋))
4 ovnprodcl.i . . . 4 (𝜑𝐼 ∈ ℕ)
53, 4ffvelcdmd 7002 . . 3 (𝜑 → (𝐹𝐼) ∈ ((ℝ × ℝ) ↑m 𝑋))
6 elmapi 8687 . . 3 ((𝐹𝐼) ∈ ((ℝ × ℝ) ↑m 𝑋) → (𝐹𝐼):𝑋⟶(ℝ × ℝ))
75, 6syl 17 . 2 (𝜑 → (𝐹𝐼):𝑋⟶(ℝ × ℝ))
81, 2, 7hoiprodcl 44336 1 (𝜑 → ∏𝑘𝑋 (vol‘(([,) ∘ (𝐹𝐼))‘𝑘)) ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1784  wcel 2105   × cxp 5606  ccom 5612  wf 6462  cfv 6466  (class class class)co 7317  m cmap 8665  Fincfn 8783  cr 10950  0cc0 10951  +∞cpnf 11086  cn 12053  [,)cico 13161  cprod 15694  volcvol 24710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-inf2 9477  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-er 8548  df-map 8667  df-pm 8668  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fi 9247  df-sup 9278  df-inf 9279  df-oi 9346  df-dju 9737  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-n0 12314  df-z 12400  df-uz 12663  df-q 12769  df-rp 12811  df-xneg 12928  df-xadd 12929  df-xmul 12930  df-ioo 13163  df-ico 13165  df-icc 13166  df-fz 13320  df-fzo 13463  df-fl 13592  df-seq 13802  df-exp 13863  df-hash 14125  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-clim 15276  df-rlim 15277  df-sum 15477  df-prod 15695  df-rest 17210  df-topgen 17231  df-psmet 20672  df-xmet 20673  df-met 20674  df-bl 20675  df-mopn 20676  df-top 22126  df-topon 22143  df-bases 22179  df-cmp 22621  df-ovol 24711  df-vol 24712
This theorem is referenced by:  ovnsupge0  44346
  Copyright terms: Public domain W3C validator