Step | Hyp | Ref
| Expression |
1 | | simpr 486 |
. . . . . 6
β’ (((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β (π
/s (π
~QG πΌ)) β Ring) |
2 | 1 | adantl 483 |
. . . . 5
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β (π
/s (π
~QG πΌ)) β Ring) |
3 | 2 | ancli 550 |
. . . 4
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β§ (π
/s (π
~QG πΌ)) β Ring)) |
4 | 3 | 3adant3 1133 |
. . 3
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β§ (π
/s (π
~QG πΌ)) β Ring)) |
5 | | simpl 484 |
. . . . 5
β’ ((π
β Rng β§ πΌ β (2Idealβπ
)) β π
β Rng) |
6 | 5 | adantr 482 |
. . . 4
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β π
β Rng) |
7 | | simpr 486 |
. . . . 5
β’ ((π
β Rng β§ πΌ β (2Idealβπ
)) β πΌ β (2Idealβπ
)) |
8 | 7 | adantr 482 |
. . . 4
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β πΌ β (2Idealβπ
)) |
9 | | eqid 2733 |
. . . 4
β’ (π
βΎs πΌ) = (π
βΎs πΌ) |
10 | | simpl 484 |
. . . . 5
β’ (((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β (π
βΎs πΌ) β Ring) |
11 | 10 | adantl 483 |
. . . 4
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β (π
βΎs πΌ) β Ring) |
12 | | eqid 2733 |
. . . 4
β’ (π
/s (π
~QG πΌ)) = (π
/s (π
~QG πΌ)) |
13 | 6, 8, 9, 11, 12 | rngringbdlem2 46792 |
. . 3
β’ ((((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring)) β§ (π
/s (π
~QG πΌ)) β Ring) β π
β Ring) |
14 | 4, 13 | syl 17 |
. 2
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β π
β Ring) |
15 | 5 | 3ad2ant1 1134 |
. . 3
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β π
β Rng) |
16 | 7 | 3ad2ant1 1134 |
. . 3
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β πΌ β (2Idealβπ
)) |
17 | | simp2l 1200 |
. . 3
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β (π
βΎs πΌ) β Ring) |
18 | | eqid 2733 |
. . 3
β’
(Baseβπ
) =
(Baseβπ
) |
19 | | ring2idlqus1.t |
. . 3
β’ Β· =
(.rβπ
) |
20 | | ring2idlqus1.1 |
. . 3
β’ 1 =
(1rβ(π
βΎs πΌ)) |
21 | | eqid 2733 |
. . 3
β’ (π
~QG πΌ) = (π
~QG πΌ) |
22 | 2 | 3adant3 1133 |
. . 3
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β (π
/s (π
~QG πΌ)) β Ring) |
23 | | simp3 1139 |
. . 3
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β π β (1rβ(π
/s (π
~QG πΌ)))) |
24 | | ring2idlqus1.m |
. . 3
β’ β =
(-gβπ
) |
25 | | ring2idlqus1.a |
. . 3
β’ + =
(+gβπ
) |
26 | | eqid 2733 |
. . 3
β’ ((π β ( 1 Β· π)) + 1 ) = ((π β ( 1 Β· π)) + 1 ) |
27 | 15, 16, 9, 17, 18, 19, 20, 21, 12, 22, 23, 24, 25, 26 | rngqiprngu 46803 |
. 2
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β
(1rβπ
) =
((π β ( 1 Β· π)) + 1 )) |
28 | 14, 27 | jca 513 |
1
β’ (((π
β Rng β§ πΌ β (2Idealβπ
)) β§ ((π
βΎs πΌ) β Ring β§ (π
/s (π
~QG πΌ)) β Ring) β§ π β (1rβ(π
/s (π
~QG πΌ)))) β (π
β Ring β§
(1rβπ
) =
((π β ( 1 Β· π)) + 1 ))) |