Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ring2idlqus1 Structured version   Visualization version   GIF version

Theorem ring2idlqus1 46804
Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.)
Hypotheses
Ref Expression
ring2idlqus1.t Β· = (.rβ€˜π‘…)
ring2idlqus1.1 1 = (1rβ€˜(𝑅 β†Ύs 𝐼))
ring2idlqus1.m βˆ’ = (-gβ€˜π‘…)
ring2idlqus1.a + = (+gβ€˜π‘…)
Assertion
Ref Expression
ring2idlqus1 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ (𝑅 ∈ Ring ∧ (1rβ€˜π‘…) = ((π‘ˆ βˆ’ ( 1 Β· π‘ˆ)) + 1 )))

Proof of Theorem ring2idlqus1
StepHypRef Expression
1 simpr 486 . . . . . 6 (((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) β†’ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)
21adantl 483 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) β†’ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)
32ancli 550 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) β†’ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring))
433adant3 1133 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring))
5 simpl 484 . . . . 5 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) β†’ 𝑅 ∈ Rng)
65adantr 482 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) β†’ 𝑅 ∈ Rng)
7 simpr 486 . . . . 5 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
87adantr 482 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
9 eqid 2733 . . . 4 (𝑅 β†Ύs 𝐼) = (𝑅 β†Ύs 𝐼)
10 simpl 484 . . . . 5 (((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) β†’ (𝑅 β†Ύs 𝐼) ∈ Ring)
1110adantl 483 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) β†’ (𝑅 β†Ύs 𝐼) ∈ Ring)
12 eqid 2733 . . . 4 (𝑅 /s (𝑅 ~QG 𝐼)) = (𝑅 /s (𝑅 ~QG 𝐼))
136, 8, 9, 11, 12rngringbdlem2 46792 . . 3 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) β†’ 𝑅 ∈ Ring)
144, 13syl 17 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ 𝑅 ∈ Ring)
1553ad2ant1 1134 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ 𝑅 ∈ Rng)
1673ad2ant1 1134 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ 𝐼 ∈ (2Idealβ€˜π‘…))
17 simp2l 1200 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ (𝑅 β†Ύs 𝐼) ∈ Ring)
18 eqid 2733 . . 3 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
19 ring2idlqus1.t . . 3 Β· = (.rβ€˜π‘…)
20 ring2idlqus1.1 . . 3 1 = (1rβ€˜(𝑅 β†Ύs 𝐼))
21 eqid 2733 . . 3 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
2223adant3 1133 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)
23 simp3 1139 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼))))
24 ring2idlqus1.m . . 3 βˆ’ = (-gβ€˜π‘…)
25 ring2idlqus1.a . . 3 + = (+gβ€˜π‘…)
26 eqid 2733 . . 3 ((π‘ˆ βˆ’ ( 1 Β· π‘ˆ)) + 1 ) = ((π‘ˆ βˆ’ ( 1 Β· π‘ˆ)) + 1 )
2715, 16, 9, 17, 18, 19, 20, 21, 12, 22, 23, 24, 25, 26rngqiprngu 46803 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ (1rβ€˜π‘…) = ((π‘ˆ βˆ’ ( 1 Β· π‘ˆ)) + 1 ))
2814, 27jca 513 1 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Idealβ€˜π‘…)) ∧ ((𝑅 β†Ύs 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ π‘ˆ ∈ (1rβ€˜(𝑅 /s (𝑅 ~QG 𝐼)))) β†’ (𝑅 ∈ Ring ∧ (1rβ€˜π‘…) = ((π‘ˆ βˆ’ ( 1 Β· π‘ˆ)) + 1 )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144   β†Ύs cress 17173  +gcplusg 17197  .rcmulr 17198   /s cqus 17451  -gcsg 18821   ~QG cqg 19002  1rcur 20004  Ringcrg 20056  2Idealc2idl 20856  Rngcrng 46648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-tpos 8211  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-ec 8705  df-qs 8709  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-hom 17221  df-cco 17222  df-0g 17387  df-prds 17393  df-imas 17454  df-qus 17455  df-xps 17456  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-nsg 19004  df-eqg 19005  df-ghm 19090  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-oppr 20150  df-dvdsr 20171  df-unit 20172  df-invr 20202  df-lss 20543  df-sra 20785  df-rgmod 20786  df-lidl 20787  df-2idl 20857  df-mgmhm 46549  df-rng 46649  df-rnghomo 46685  df-rngisom 46686  df-subrng 46725
This theorem is referenced by:  pzriprng1ALT  46820
  Copyright terms: Public domain W3C validator