| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring2idlqus1 | Structured version Visualization version GIF version | ||
| Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| ring2idlqus1.t | ⊢ · = (.r‘𝑅) |
| ring2idlqus1.1 | ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) |
| ring2idlqus1.m | ⊢ − = (-g‘𝑅) |
| ring2idlqus1.a | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| ring2idlqus1 | ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ (((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) |
| 3 | 2 | ancli 548 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑅 ∈ Rng) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → 𝑅 ∈ Rng) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 9 | eqid 2735 | . . . 4 ⊢ (𝑅 ↾s 𝐼) = (𝑅 ↾s 𝐼) | |
| 10 | simpl 482 | . . . . 5 ⊢ (((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → (𝑅 ↾s 𝐼) ∈ Ring) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (𝑅 ↾s 𝐼) ∈ Ring) |
| 12 | eqid 2735 | . . . 4 ⊢ (𝑅 /s (𝑅 ~QG 𝐼)) = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 13 | 6, 8, 9, 11, 12 | rngringbdlem2 21266 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → 𝑅 ∈ Ring) |
| 14 | 4, 13 | syl 17 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑅 ∈ Ring) |
| 15 | 5 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑅 ∈ Rng) |
| 16 | 7 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 17 | simp2l 1200 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ↾s 𝐼) ∈ Ring) | |
| 18 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | ring2idlqus1.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 20 | ring2idlqus1.1 | . . 3 ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) | |
| 21 | eqid 2735 | . . 3 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 22 | 2 | 3adant3 1132 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) |
| 23 | simp3 1138 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) | |
| 24 | ring2idlqus1.m | . . 3 ⊢ − = (-g‘𝑅) | |
| 25 | ring2idlqus1.a | . . 3 ⊢ + = (+g‘𝑅) | |
| 26 | eqid 2735 | . . 3 ⊢ ((𝑈 − ( 1 · 𝑈)) + 1 ) = ((𝑈 − ( 1 · 𝑈)) + 1 ) | |
| 27 | 15, 16, 9, 17, 18, 19, 20, 21, 12, 22, 23, 24, 25, 26 | rngqiprngu 21277 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 )) |
| 28 | 14, 27 | jca 511 | 1 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 ↾s cress 17249 +gcplusg 17269 .rcmulr 17270 /s cqus 17517 -gcsg 18916 ~QG cqg 19103 Rngcrng 20110 1rcur 20139 Ringcrg 20191 2Idealc2idl 21208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-ec 8719 df-qs 8723 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-hom 17293 df-cco 17294 df-0g 17453 df-prds 17459 df-imas 17520 df-qus 17521 df-xps 17522 df-mgm 18616 df-mgmhm 18668 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-nsg 19105 df-eqg 19106 df-ghm 19194 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-rnghm 20394 df-rngim 20395 df-subrng 20504 df-lss 20887 df-sra 21129 df-rgmod 21130 df-lidl 21167 df-2idl 21209 |
| This theorem is referenced by: pzriprng1ALT 21455 |
| Copyright terms: Public domain | W3C validator |