![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ring2idlqus1 | Structured version Visualization version GIF version |
Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
Ref | Expression |
---|---|
ring2idlqus1.t | ⊢ · = (.r‘𝑅) |
ring2idlqus1.1 | ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) |
ring2idlqus1.m | ⊢ − = (-g‘𝑅) |
ring2idlqus1.a | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
ring2idlqus1 | ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ (((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) |
3 | 2 | ancli 548 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) |
4 | 3 | 3adant3 1131 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) |
5 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑅 ∈ Rng) | |
6 | 5 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → 𝑅 ∈ Rng) |
7 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅)) | |
8 | 7 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → 𝐼 ∈ (2Ideal‘𝑅)) |
9 | eqid 2731 | . . . 4 ⊢ (𝑅 ↾s 𝐼) = (𝑅 ↾s 𝐼) | |
10 | simpl 482 | . . . . 5 ⊢ (((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → (𝑅 ↾s 𝐼) ∈ Ring) | |
11 | 10 | adantl 481 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (𝑅 ↾s 𝐼) ∈ Ring) |
12 | eqid 2731 | . . . 4 ⊢ (𝑅 /s (𝑅 ~QG 𝐼)) = (𝑅 /s (𝑅 ~QG 𝐼)) | |
13 | 6, 8, 9, 11, 12 | rngringbdlem2 21070 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → 𝑅 ∈ Ring) |
14 | 4, 13 | syl 17 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑅 ∈ Ring) |
15 | 5 | 3ad2ant1 1132 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑅 ∈ Rng) |
16 | 7 | 3ad2ant1 1132 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝐼 ∈ (2Ideal‘𝑅)) |
17 | simp2l 1198 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ↾s 𝐼) ∈ Ring) | |
18 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
19 | ring2idlqus1.t | . . 3 ⊢ · = (.r‘𝑅) | |
20 | ring2idlqus1.1 | . . 3 ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) | |
21 | eqid 2731 | . . 3 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
22 | 2 | 3adant3 1131 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) |
23 | simp3 1137 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) | |
24 | ring2idlqus1.m | . . 3 ⊢ − = (-g‘𝑅) | |
25 | ring2idlqus1.a | . . 3 ⊢ + = (+g‘𝑅) | |
26 | eqid 2731 | . . 3 ⊢ ((𝑈 − ( 1 · 𝑈)) + 1 ) = ((𝑈 − ( 1 · 𝑈)) + 1 ) | |
27 | 15, 16, 9, 17, 18, 19, 20, 21, 12, 22, 23, 24, 25, 26 | rngqiprngu 21081 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 )) |
28 | 14, 27 | jca 511 | 1 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 ↾s cress 17180 +gcplusg 17204 .rcmulr 17205 /s cqus 17458 -gcsg 18860 ~QG cqg 19042 Rngcrng 20050 1rcur 20079 Ringcrg 20131 2Idealc2idl 21009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-ec 8711 df-qs 8715 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-prds 17400 df-imas 17461 df-qus 17462 df-xps 17463 df-mgm 18568 df-mgmhm 18620 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-sbg 18863 df-subg 19043 df-nsg 19044 df-eqg 19045 df-ghm 19132 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-rnghm 20331 df-rngim 20332 df-subrng 20438 df-lss 20691 df-sra 20934 df-rgmod 20935 df-lidl 20936 df-2idl 21010 |
This theorem is referenced by: pzriprng1ALT 21269 |
Copyright terms: Public domain | W3C validator |