| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ring2idlqus1 | Structured version Visualization version GIF version | ||
| Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| ring2idlqus1.t | ⊢ · = (.r‘𝑅) |
| ring2idlqus1.1 | ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) |
| ring2idlqus1.m | ⊢ − = (-g‘𝑅) |
| ring2idlqus1.a | ⊢ + = (+g‘𝑅) |
| Ref | Expression |
|---|---|
| ring2idlqus1 | ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ (((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) |
| 3 | 2 | ancli 548 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑅 ∈ Rng) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → 𝑅 ∈ Rng) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 9 | eqid 2733 | . . . 4 ⊢ (𝑅 ↾s 𝐼) = (𝑅 ↾s 𝐼) | |
| 10 | simpl 482 | . . . . 5 ⊢ (((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → (𝑅 ↾s 𝐼) ∈ Ring) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) → (𝑅 ↾s 𝐼) ∈ Ring) |
| 12 | eqid 2733 | . . . 4 ⊢ (𝑅 /s (𝑅 ~QG 𝐼)) = (𝑅 /s (𝑅 ~QG 𝐼)) | |
| 13 | 6, 8, 9, 11, 12 | rngringbdlem2 21246 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring)) ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) → 𝑅 ∈ Ring) |
| 14 | 4, 13 | syl 17 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑅 ∈ Ring) |
| 15 | 5 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑅 ∈ Rng) |
| 16 | 7 | 3ad2ant1 1133 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝐼 ∈ (2Ideal‘𝑅)) |
| 17 | simp2l 1200 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ↾s 𝐼) ∈ Ring) | |
| 18 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | ring2idlqus1.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 20 | ring2idlqus1.1 | . . 3 ⊢ 1 = (1r‘(𝑅 ↾s 𝐼)) | |
| 21 | eqid 2733 | . . 3 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 22 | 2 | 3adant3 1132 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) |
| 23 | simp3 1138 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) | |
| 24 | ring2idlqus1.m | . . 3 ⊢ − = (-g‘𝑅) | |
| 25 | ring2idlqus1.a | . . 3 ⊢ + = (+g‘𝑅) | |
| 26 | eqid 2733 | . . 3 ⊢ ((𝑈 − ( 1 · 𝑈)) + 1 ) = ((𝑈 − ( 1 · 𝑈)) + 1 ) | |
| 27 | 15, 16, 9, 17, 18, 19, 20, 21, 12, 22, 23, 24, 25, 26 | rngqiprngu 21257 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 )) |
| 28 | 14, 27 | jca 511 | 1 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (2Ideal‘𝑅)) ∧ ((𝑅 ↾s 𝐼) ∈ Ring ∧ (𝑅 /s (𝑅 ~QG 𝐼)) ∈ Ring) ∧ 𝑈 ∈ (1r‘(𝑅 /s (𝑅 ~QG 𝐼)))) → (𝑅 ∈ Ring ∧ (1r‘𝑅) = ((𝑈 − ( 1 · 𝑈)) + 1 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 +gcplusg 17163 .rcmulr 17164 /s cqus 17411 -gcsg 18850 ~QG cqg 19037 Rngcrng 20072 1rcur 20101 Ringcrg 20153 2Idealc2idl 21188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-prds 17353 df-imas 17414 df-qus 17415 df-xps 17416 df-mgm 18550 df-mgmhm 18602 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-nsg 19039 df-eqg 19040 df-ghm 19127 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-rnghm 20356 df-rngim 20357 df-subrng 20463 df-lss 20867 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-2idl 21189 |
| This theorem is referenced by: pzriprng1ALT 21435 |
| Copyright terms: Public domain | W3C validator |