MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply2gOLD Structured version   Visualization version   GIF version

Theorem dvply2gOLD 26220
Description: Obsolete version of dvply2g 26219 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dvply2gOLD ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2gOLD
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyf 26130 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
21adantl 481 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
32feqmptd 6890 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
4 simplr 768 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
5 dgrcl 26165 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
65adantl 481 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℕ0)
76nn0zd 12494 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℤ)
87adantr 480 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (deg‘𝐹) ∈ ℤ)
9 uzid 12747 . . . . . . 7 ((deg‘𝐹) ∈ ℤ → (deg‘𝐹) ∈ (ℤ‘(deg‘𝐹)))
10 peano2uz 12799 . . . . . . 7 ((deg‘𝐹) ∈ (ℤ‘(deg‘𝐹)) → ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)))
118, 9, 103syl 18 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)))
12 simpr 484 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
13 eqid 2731 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
14 eqid 2731 . . . . . . 7 (deg‘𝐹) = (deg‘𝐹)
1513, 14coeid3 26172 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏)))
164, 11, 12, 15syl3anc 1373 . . . . 5 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏)))
1716mpteq2dva 5182 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏))))
183, 17eqtrd 2766 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏))))
196nn0cnd 12444 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℂ)
20 ax-1cn 11064 . . . . . . . 8 1 ∈ ℂ
21 pncan 11366 . . . . . . . 8 (((deg‘𝐹) ∈ ℂ ∧ 1 ∈ ℂ) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹))
2219, 20, 21sylancl 586 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹))
2322eqcomd 2737 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) = (((deg‘𝐹) + 1) − 1))
2423oveq2d 7362 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (0...(deg‘𝐹)) = (0...(((deg‘𝐹) + 1) − 1)))
2524sumeq1d 15607 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
2625mpteq2dv 5183 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
2713coef3 26164 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
2827adantl 481 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
29 oveq1 7353 . . . . 5 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
30 fvoveq1 7369 . . . . 5 (𝑐 = 𝑏 → ((coeff‘𝐹)‘(𝑐 + 1)) = ((coeff‘𝐹)‘(𝑏 + 1)))
3129, 30oveq12d 7364 . . . 4 (𝑐 = 𝑏 → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑏 + 1) · ((coeff‘𝐹)‘(𝑏 + 1))))
3231cbvmptv 5193 . . 3 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · ((coeff‘𝐹)‘(𝑏 + 1))))
33 peano2nn0 12421 . . . 4 ((deg‘𝐹) ∈ ℕ0 → ((deg‘𝐹) + 1) ∈ ℕ0)
346, 33syl 17 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((deg‘𝐹) + 1) ∈ ℕ0)
3518, 26, 28, 32, 34dvply1 26218 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
36 cnfldbas 21295 . . . . 5 ℂ = (Base‘ℂfld)
3736subrgss 20487 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
3837adantr 480 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝑆 ⊆ ℂ)
39 elfznn0 13520 . . . 4 (𝑏 ∈ (0...(deg‘𝐹)) → 𝑏 ∈ ℕ0)
40 simpll 766 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
41 zsssubrg 21362 . . . . . . . . 9 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
4241ad2antrr 726 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
43 peano2nn0 12421 . . . . . . . . . 10 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
4443adantl 481 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
4544nn0zd 12494 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
4642, 45sseldd 3930 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
47 simplr 768 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
48 subrgsubg 20492 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
49 cnfld0 21329 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
5049subg0cl 19047 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
5148, 50syl 17 . . . . . . . . . 10 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
5251ad2antrr 726 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
5313coef2 26163 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝐹):ℕ0𝑆)
5447, 52, 53syl2anc 584 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (coeff‘𝐹):ℕ0𝑆)
5554, 44ffvelcdmd 7018 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆)
56 cnfldmul 21299 . . . . . . . 8 · = (.r‘ℂfld)
5756subrgmcl 20499 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)
5840, 46, 55, 57syl3anc 1373 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)
5958fmpttd 7048 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))):ℕ0𝑆)
6059ffvelcdmda 7017 . . . 4 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
6139, 60sylan2 593 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ (0...(deg‘𝐹))) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
6238, 6, 61elplyd 26134 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
6335, 62eqeltrd 2831 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  cexp 13968  Σcsu 15593  SubGrpcsubg 19033  SubRingcsubrg 20484  fldccnfld 21291   D cdv 25791  Polycply 26116  coeffccoe 26118  degcdgr 26119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-0p 25598  df-limc 25794  df-dv 25795  df-ply 26120  df-coe 26122  df-dgr 26123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator