MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvply2gOLD Structured version   Visualization version   GIF version

Theorem dvply2gOLD 26342
Description: Obsolete version of dvply2g 26341 as of 30-Apr-2025. (Contributed by Mario Carneiro, 1-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dvply2gOLD ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2gOLD
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyf 26252 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
21adantl 481 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
32feqmptd 6977 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
4 simplr 769 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
5 dgrcl 26287 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
65adantl 481 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℕ0)
76nn0zd 12637 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℤ)
87adantr 480 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (deg‘𝐹) ∈ ℤ)
9 uzid 12891 . . . . . . 7 ((deg‘𝐹) ∈ ℤ → (deg‘𝐹) ∈ (ℤ‘(deg‘𝐹)))
10 peano2uz 12941 . . . . . . 7 ((deg‘𝐹) ∈ (ℤ‘(deg‘𝐹)) → ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)))
118, 9, 103syl 18 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)))
12 simpr 484 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
13 eqid 2735 . . . . . . 7 (coeff‘𝐹) = (coeff‘𝐹)
14 eqid 2735 . . . . . . 7 (deg‘𝐹) = (deg‘𝐹)
1513, 14coeid3 26294 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ ((deg‘𝐹) + 1) ∈ (ℤ‘(deg‘𝐹)) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏)))
164, 11, 12, 15syl3anc 1370 . . . . 5 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏)))
1716mpteq2dva 5248 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏))))
183, 17eqtrd 2775 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((deg‘𝐹) + 1))(((coeff‘𝐹)‘𝑏) · (𝑎𝑏))))
196nn0cnd 12587 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) ∈ ℂ)
20 ax-1cn 11211 . . . . . . . 8 1 ∈ ℂ
21 pncan 11512 . . . . . . . 8 (((deg‘𝐹) ∈ ℂ ∧ 1 ∈ ℂ) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹))
2219, 20, 21sylancl 586 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (((deg‘𝐹) + 1) − 1) = (deg‘𝐹))
2322eqcomd 2741 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (deg‘𝐹) = (((deg‘𝐹) + 1) − 1))
2423oveq2d 7447 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (0...(deg‘𝐹)) = (0...(((deg‘𝐹) + 1) − 1)))
2524sumeq1d 15733 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
2625mpteq2dv 5250 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(((deg‘𝐹) + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
2713coef3 26286 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
2827adantl 481 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (coeff‘𝐹):ℕ0⟶ℂ)
29 oveq1 7438 . . . . 5 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
30 fvoveq1 7454 . . . . 5 (𝑐 = 𝑏 → ((coeff‘𝐹)‘(𝑐 + 1)) = ((coeff‘𝐹)‘(𝑏 + 1)))
3129, 30oveq12d 7449 . . . 4 (𝑐 = 𝑏 → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) = ((𝑏 + 1) · ((coeff‘𝐹)‘(𝑏 + 1))))
3231cbvmptv 5261 . . 3 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · ((coeff‘𝐹)‘(𝑏 + 1))))
33 peano2nn0 12564 . . . 4 ((deg‘𝐹) ∈ ℕ0 → ((deg‘𝐹) + 1) ∈ ℕ0)
346, 33syl 17 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((deg‘𝐹) + 1) ∈ ℕ0)
3518, 26, 28, 32, 34dvply1 26340 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
36 cnfldbas 21386 . . . . 5 ℂ = (Base‘ℂfld)
3736subrgss 20589 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
3837adantr 480 . . 3 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝑆 ⊆ ℂ)
39 elfznn0 13657 . . . 4 (𝑏 ∈ (0...(deg‘𝐹)) → 𝑏 ∈ ℕ0)
40 simpll 767 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
41 zsssubrg 21461 . . . . . . . . 9 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
4241ad2antrr 726 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
43 peano2nn0 12564 . . . . . . . . . 10 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
4443adantl 481 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
4544nn0zd 12637 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
4642, 45sseldd 3996 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
47 simplr 769 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 𝐹 ∈ (Poly‘𝑆))
48 subrgsubg 20594 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
49 cnfld0 21423 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
5049subg0cl 19165 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
5148, 50syl 17 . . . . . . . . . 10 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
5251ad2antrr 726 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
5313coef2 26285 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 0 ∈ 𝑆) → (coeff‘𝐹):ℕ0𝑆)
5447, 52, 53syl2anc 584 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → (coeff‘𝐹):ℕ0𝑆)
5554, 44ffvelcdmd 7105 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆)
56 cnfldmul 21390 . . . . . . . 8 · = (.r‘ℂfld)
5756subrgmcl 20601 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ ((coeff‘𝐹)‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)
5840, 46, 55, 57syl3anc 1370 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))) ∈ 𝑆)
5958fmpttd 7135 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1)))):ℕ0𝑆)
6059ffvelcdmda 7104 . . . 4 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
6139, 60sylan2 593 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑏 ∈ (0...(deg‘𝐹))) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
6238, 6, 61elplyd 26256 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(deg‘𝐹))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · ((coeff‘𝐹)‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
6335, 62eqeltrd 2839 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  cexp 14099  Σcsu 15719  SubGrpcsubg 19151  SubRingcsubrg 20586  fldccnfld 21382   D cdv 25913  Polycply 26238  coeffccoe 26240  degcdgr 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-mulg 19099  df-subg 19154  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrng 20563  df-subrg 20587  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-0p 25719  df-limc 25916  df-dv 25917  df-ply 26242  df-coe 26244  df-dgr 26245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator