Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnioobibld Structured version   Visualization version   GIF version

Theorem cnioobibld 43197
Description: A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (𝑥 ∈ (0(,)1) ↦ (1 / 𝑥)). See cniccibl 25776 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.)
Hypotheses
Ref Expression
cnioobibld.1 (𝜑𝐴 ∈ ℝ)
cnioobibld.2 (𝜑𝐵 ∈ ℝ)
cnioobibld.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cnioobibld.4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
Assertion
Ref Expression
cnioobibld (𝜑𝐹 ∈ 𝐿1)
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem cnioobibld
StepHypRef Expression
1 ioombl 25500 . . 3 (𝐴(,)𝐵) ∈ dom vol
2 cnioobibld.3 . . 3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
3 cnmbf 25594 . . 3 (((𝐴(,)𝐵) ∈ dom vol ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → 𝐹 ∈ MblFn)
41, 2, 3sylancr 587 . 2 (𝜑𝐹 ∈ MblFn)
5 cncff 24820 . . . . 5 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
6 fdm 6679 . . . . 5 (𝐹:(𝐴(,)𝐵)⟶ℂ → dom 𝐹 = (𝐴(,)𝐵))
72, 5, 63syl 18 . . . 4 (𝜑 → dom 𝐹 = (𝐴(,)𝐵))
87fveq2d 6844 . . 3 (𝜑 → (vol‘dom 𝐹) = (vol‘(𝐴(,)𝐵)))
9 cnioobibld.1 . . . 4 (𝜑𝐴 ∈ ℝ)
10 cnioobibld.2 . . . 4 (𝜑𝐵 ∈ ℝ)
11 ioovolcl 25505 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
129, 10, 11syl2anc 584 . . 3 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
138, 12eqeltrd 2828 . 2 (𝜑 → (vol‘dom 𝐹) ∈ ℝ)
14 cnioobibld.4 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
15 bddibl 25775 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
164, 13, 14, 15syl3anc 1373 1 (𝜑𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  cle 11187  (,)cioo 13284  abscabs 15177  cnccncf 24803  volcvol 25398  MblFncmbf 25549  𝐿1cibl 25552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cc 10366  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-acn 9873  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cn 23148  df-cnp 23149  df-cmp 23308  df-tx 23483  df-hmeo 23676  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-ovol 25399  df-vol 25400  df-mbf 25554  df-itg1 25555  df-itg2 25556  df-ibl 25557  df-0p 25605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator