Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnioobibld Structured version   Visualization version   GIF version

Theorem cnioobibld 43321
Description: A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (𝑥 ∈ (0(,)1) ↦ (1 / 𝑥)). See cniccibl 25779 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.)
Hypotheses
Ref Expression
cnioobibld.1 (𝜑𝐴 ∈ ℝ)
cnioobibld.2 (𝜑𝐵 ∈ ℝ)
cnioobibld.3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cnioobibld.4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
Assertion
Ref Expression
cnioobibld (𝜑𝐹 ∈ 𝐿1)
Distinct variable group:   𝑥,𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem cnioobibld
StepHypRef Expression
1 ioombl 25503 . . 3 (𝐴(,)𝐵) ∈ dom vol
2 cnioobibld.3 . . 3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
3 cnmbf 25597 . . 3 (((𝐴(,)𝐵) ∈ dom vol ∧ 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) → 𝐹 ∈ MblFn)
41, 2, 3sylancr 587 . 2 (𝜑𝐹 ∈ MblFn)
5 cncff 24823 . . . . 5 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
6 fdm 6668 . . . . 5 (𝐹:(𝐴(,)𝐵)⟶ℂ → dom 𝐹 = (𝐴(,)𝐵))
72, 5, 63syl 18 . . . 4 (𝜑 → dom 𝐹 = (𝐴(,)𝐵))
87fveq2d 6835 . . 3 (𝜑 → (vol‘dom 𝐹) = (vol‘(𝐴(,)𝐵)))
9 cnioobibld.1 . . . 4 (𝜑𝐴 ∈ ℝ)
10 cnioobibld.2 . . . 4 (𝜑𝐵 ∈ ℝ)
11 ioovolcl 25508 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
129, 10, 11syl2anc 584 . . 3 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
138, 12eqeltrd 2833 . 2 (𝜑 → (vol‘dom 𝐹) ∈ ℝ)
14 cnioobibld.4 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
15 bddibl 25778 . 2 ((𝐹 ∈ MblFn ∧ (vol‘dom 𝐹) ∈ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → 𝐹 ∈ 𝐿1)
164, 13, 14, 15syl3anc 1373 1 (𝜑𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3049  wrex 3058   class class class wbr 5095  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  cle 11157  (,)cioo 13255  abscabs 15151  cnccncf 24806  volcvol 25401  MblFncmbf 25552  𝐿1cibl 25555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-dju 9804  df-card 9842  df-acn 9845  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cn 23152  df-cnp 23153  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-ovol 25402  df-vol 25403  df-mbf 25557  df-itg1 25558  df-itg2 25559  df-ibl 25560  df-0p 25608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator